Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5887
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳靜雄
dc.contributor.authorChih-Hao Chenen
dc.contributor.author陳致豪zh_TW
dc.date.accessioned2021-05-16T16:18:03Z-
dc.date.available2015-08-20
dc.date.available2021-05-16T16:18:03Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation[1] D. F. Vanderwerf, Applied Prismatic and Reflective Optics, SPIE press, 2010
[2] E. Hecht, Optics, 4th edition, Addison-Wesley, 2002
[3] K. Iizuka, Elements of Photonics, vol. 1, Wiley-Interscience, 2002
[4] J. M. Bennett, H. E. Bennett, Polarization in Handbook of Optics, W. G. Driscoll,
W. Vaughan(editors), 1st edition, McGRAW-HILL, 1978
[5] G. Peng, R. Ye et al, 'Design of MacNeille Polarizing Beam Splitter', Symposium
on Photonics and Optoelectronics 2009 conference
[6] M. S. Brennesholtz, E. H. Stupp, Projection Displays , 2nd edition, Wiley Series in
Display Technology, 2008
[7] M. Banning, 'Practical Methods of Making and Using Multilayer Filters', JOSA,
Vol. 37, Issue 10, pp. 792-795 (1947)
[8] Li Li, J. A. Dobrowolski, 'Visible broadband, wide-angle, thin-film multilayer
polarizing beam splitter', Applied Optics, Vol. 35, Issue 13, pp. 2221-2225 (1996)
[9] Li Li, J. A. Dobrowolski, 'High-Performance Thin-Film Polarizing Beam Splitter
Operating at Angles Greater than the Critical Angle', Applied Optics, Vol. 39, Issue
16, pp. 2754-2771 (2000)
[10] J. M. Jonza et al., “Polarizing beam-splitting optical component,” U.S. Patent No.
5,962,114 (1999)
[11] W. W. Merrill et al., 'Post-formable multilayer films and methods of forming',
U.S. Patent No. 2012/0105957 A1(2012)
[12] C. L. Bruzzone et al., “Polarizing beam splitter,” U.S. Patent No. 6,721,096
(2004)
[13] S. K. Eckhardt et al., '3M PBS for high-performance LCOS optical engine',
Proc.of SPIE-IS&T Electronic Imaging, SPIE Vol. 5002 (2003)
[14] M. Born, E.Wolf et al., Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light , 7th edition, Cambridge University
Press, 1999
[15] D. Wang, W. Liu et al., 'Embedded metal-wire nanograting and its application in
an optical polarization beam splitter/combiner', Applied Optics, Vol. 47, Issue 3, pp.
312-316 (2008)
[16] M. Xu, H. Urbach et al., 'Wire-grid diffraction gratings used as polarizing beam
splitter for visible light and applied in liquid crystal on silicon', Optics Express, Vol.
13, Issue 7, pp. 2303-2320 (2005)
[17] R. T. Perkins, C. Y. Cheng et al., 'Multilayer wire-grid polarizer with off-set
wire-grid and dielectric grid', U.S. Patent No. 8,027,087 B2 (2011)
[18] R.T. Perkins, D. P. Hansen et al., 'Broadband wire grid polarizer for the visible
spectrum', U.S. Patent No. 6,122,103 (2000)
[19] E. D. Palik, Handbook of Optical Constants of Solids, Volume 1, Academic Press
(1985)
[20] A. D. Rakić, 'Algorithm for the determination of intrinsic optical constants of
metal films: application to aluminum', Applied Optics, Vol. 34, Issue 22, pp.
4755-4767 (1995)
[21] S. Habraken, O. Michaux et al,. 'Polarizing holographic beam splitter on a
photoresist', Optics Letters, Vol. 20, Issue 22, pp. 2348-2350 (1995)
[22] P. Lalanne, J. Hazart et al., 'A transmission polarizing beam splitter grating', J.
Opt. A: Pure Appl. Opt. 1 p.p.215-219 (1999)
[23] J. G. Zheng, C. G. Zhou et al., 'Polarizing beam splitter of two-layer dielectric
rectangular transmission gratings in Littrow mounting', Optics Communications Volume 282, Issue 15, p.p. 3069–3075 (2009)
[24] Q. Y. Bi, J. G. Zheng et al., 'Design of rectangular-groove fused-silica gratings as
polarizing beam splitters', Optics Express, Vol. 18, Issue 11, pp. 11969-11978 (2010)
[25] C. G. Zhou, W. Jia, 'Novel uses for deep-etched, fused-silica diffraction
gratings', SPIE Newsroom, 2011
[26] J. H. Lee, D. N. Liu, S. T. Wu, Introduction to Flat Panel Displays, Wiley Series
in Display Technology, 2009
[27] T. Scharf, Polarized Light in Liquid Crystals and Polymers, Wiley-Interscience,
2007
[28] C. C. Chen , C. Y. Wu, T. F. Wu, 'LED back-light driving system for LCD
panels', Applied Power Electronics Conference and Exposition 2006, IEEE, p.p.
381-385
[29] 陳建宏, '利用分色光柵提高液晶面板的光學效率之分析與探討', 國立台灣
大學碩士論文, 2006
[30] 簡瑋廷, '高功率發光二極體應用於導光元件之研究', 國立中央大學碩士論
文, 2006
[31] L. Li, J. A. Dobrowoiski et al., 'Novel Thin Film Polarizing Beam-splitter and Its
Application in High Efficiency Projection Displays', Proceedings of SPIE, volume
3634, p.p. 52–62, 1999
[32] T. Gunjima, Y. Ooi et al., 'LCD device including an illumination device having a
polarized light separating sheet between a light guide and the display', US Patent
RE38305 E (2003)
[33] Pochi Yeh, Claire Gu, Optics of Liquid Crystal Displays, 1st edition, Wiley Series
in Pure and Applied Optics, 1999
[34] E. Lueder, 3D Displays, 1st edition, Wiley Series in Display Technology, 2012
[35] I.C. Botten, M.S. Craig et al, 'The Dielectric Lamellar Diffraction Grating',
OPTICA ACTA, 1981, VOL . 28, NO. 3, 413-428
[36] J. G. Van Bladel, Electromagnetic Fields, 2nd edition, Wiley-IEEE Press, 2007
[37] Jijun Feng, Changhe Zhou et al., 'Three-port beam splitter of a binary
fused-silica grating', Applied Optics, Vol. 47, Issue 35, pp. 6638-6643 (2008)
[38] T. Clausnitzer, T. Kämpfe et al., 'Investigation of the polarization-dependent
diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow
mounting', Applied Optics, Vol. 46, Issue 6, pp. 819-826 (2007)
[39] M. G. Moharam, T. K. Gaylord, 'Rigorous coupled-wave analysis of
planar-grating diffraction', JOSA, Vol. 71, Issue 7, pp. 811-818 (1981)
[40] M. G. Moharam, Eric B. Grann et al., “Formulation for stable and efficient
implementation of the rigorous coupled-wave analysis of binary gratings”, JOSA A,
Vol. 12, Issue 5, pp. 1068-1076 (1995)
[41] P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave
method for TM polarization”, JOSA A, Vol. 13, Issue 4, pp. 779-784 (1996)
[42] S. Pengm, G. M. Morris, “Efficient implementation of rigorous coupled-wave
analysis for surface-relief gratings”, JOSA A, Vol. 12, Issue 5, pp. 1087-1096 (1995)
[43] N.Chateau, J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of
grating diffraction”, JOSA A, Vol. 11, Issue 4, pp. 1321-1331 (1994)
[44] R. C. Tyan, P. C. Sun et al., 'Polarizing beam splitter based on the anisotropic
spectral reflectivity characteristic of form-birefringent multilayer gratings', Optics
Letters, Vol. 21, Issue 10, pp. 761-763 (1996)
[45] J. D. Joannopoulos, S. G. Johnson et al., Photonic Crystals: Molding the Flow of
Light, 2nd edition, Princeton University Press, 2008, chap 2
[46] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, 'Refraction in Media
with a Negative Refractive Index', Phys. Rev. Lett. 90, 107402 (2003)
[47] Burn J. Lin, Optical Lithography: Here is Why, SPIE Press, 2010, chap 7 & 8
[48] Kiyotaka Wasa, Makoto Kitabatake et al., Thin Films Material Technology:
Sputtering of Compound Materials, 1st edition, Springer, 2004
[49] S. M. Edlou, A. Smajkiewicz et al., 'Optical properties and environmental
stability of oxide coatings deposited by reactive sputtering' Applied Optics, Vol. 32,
Issue 28, pp. 5601-5605 (1993)
[50] V. Lowalekar, S. Raghavanet, 'Etching of zirconium oxide, hafnium oxide, and
hafnium silicates in dilute hydrofluoric acid solutions', J. Mater. Res., 19 [4] 1149–56
(2004)
[51] Michael Köhler, Etching in Microsystem Technology, 1st edition, Wiley-VCH, p.p.
324 (1999)
[52] CY Huang, HM Ku et al., 'Refractive index variation of amorphous Ta2O5 film
fabricated by ion beam sputtering with RF bias power', Optical Review
, Volume 16, Issue 3, p.p. 274-275 (2009)
[53] M. Bass, C. DeCusatis et al., Handbook of Optics : Optical Properties of
Materials, Nonlinear Optics, Quantum Optics, Vol. IV, 3rd edition, McGraw-Hill
Professional, 2009, p.p.2.65
[54] M. Debenham, 'Refractive indices of zinc sulfide in the 0.405-13-μm
wavelength range', Applied Optics, Vol. 23, Issue 14, pp. 2238-2239 (1984)
[55] E. F. Schubert, Light-Emitting Diodes, 2nd edition, Cambridge University Press
(2006)
[56] A. Köck, E. Gornik et al., 'Strongly directional emission from AlGaAs/GaAs
light‐emitting diodes', Appl. Phys. Lett. 57, 2327 (1990)
[57] Chun-Feng Lai, Hao-Chung Kuo et al.,'Highly-directional emission patterns
based on near single guided mode extraction from GaN-based ultrathin microcavity
light-emitting diodes with photonic crystals', Appl. Phys. Lett. 97, 013108 (2010)
[58] Jae-Young Joo, Sun-Kyu Lee, 'Miniaturized TIR Fresnel lens for miniature
optical LED applications', International Journal of Precision Engineering and
Manufacturing, Volume 10, Issue 2, p.p. 137-140 (2009)
[59] L. Occhi, V. Laino, C. Velez, 'Light source, and device', US Patent 8,022,389 B2,
(2011)
[60] G.A. Alphonse, M. Toda, 'Mode Coupling in Angled Facet Semiconductor
Optical Amplifiers and Superluminescent Diodes', IEEE J. Lightwave Tech.,
Volume:10 , Issue:2, p.215-219 (1992)
[61] G. A. Alphonse, D. B. Gilbert, M. G. Harvey, 'High-power superluminescent
diodes', IEEE Journal of Quantum Electronics, Volume:24 , Issue: 12, p.p. 2454 –
2457 (1988)
[62] E. Feltin, A. Castiglia et al., 'Broadband blue superluminescent light-emitting
diodes based on GaN', Appl. Phys. Lett. 95, 081107 (2009)
[63] Bong-Min Song, Bongtae Han, 'Spectral power distribution deconvolution
scheme for phosphor-converted white light-emitting diode using multiple Gaussian
functions', Applied Optics, Vol. 52, Issue 5, pp. 1016-1024 (2013)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5887-
dc.description.abstract傳統的偏振器是吸收特定極化的偏振光,因此光的使用效率最高只有百分之五十。為了提高光使用效率,本論文利用極化分光器實現了一種應用於可見光的高光使用效率(light utilization efficiency, LUE)的偏振器。我們設計的極化分光器,在特定情況下,能使用百分之八十的光,最多則有百分之九十的光可利用。
本論文設計的極化分光器是使用繞射光柵(Diffraction grating)。並利用利特羅裝置(Littrow mounting)的現象來分析其特性。數值方法是採用嚴格耦合波法(Rigorous Coupled Wave Analysis, RCWA)。我們利用一些物理理論和公式在論文中調整各個參數來達到優化的目的。
傳統的極化分光器有的是利用雙折射效應或多層結構,雖然不會有過多的損耗,卻因為入射角度的允許範圍不大或是體積龐大而受限。另有一種極化分光器是利用金屬的線柵結構,這種結構雖然能夠達到很好的消光比,而且也能夠應用在整個可見光波段,卻很難避免損耗,其中又以藍光波段為甚,論文的例子中至少都有百分之十的損耗,最多則約有百分之二十的損耗。也因此,和我們的設計相比,能夠利用的光最多相差約百分之十,最少也有百分之三到四的差距。
雖然我們的設計未能涵蓋整個可見光波段,但這個問題亦能分化成紅綠藍三個波段個別解決。此外,藉由光源頻譜的高斯函數近似,適當地對波段取捨,能進一步提高允許的入射角度範圍。同時,在論文的最後,我們針對光源的出光角度,介紹了幾種能夠縮小出光角度的方法。
極化分光器的一個應用是液晶顯示器的背光模組。一旦提高了光使用率,就能進一步達到節能的效果。
zh_TW
dc.description.abstractThis thesis designs a polarization beam splitter (PBS) to achieve high light utilization efficiency (LUE). Compared with conventional absorption polarizers of which the LUE is at most 50%, the LUE of our design is about 80% under certain conditions. And, the 90% maximum light utilization efficiency was also achievable.
We use dielectric diffraction grating to design the PBS and employ the so-called Littrow mounting phenomenon to analyze its characteristics. We use the 'Rigorous Coupled Wave Analysis'(RCWA) to perform the numerical simulation. And we also describe the optimization process by using the physical theorems and equations.
Some conventional PBSs employ birefringent crystals, multilayer structure, and birefringent multilayer structure. However, these attempts suffer either the relatively small acceptance angle or very bulky. The wire-grid polarizer/PBS which utilizes metal is also commercially available; nevertheless, the attenuation due to metals is inevitable. Compared with a wire-grid polarizer/PBS example in this thesis, our design would lead nearly 10% higher LUE in blue-violet band.
However, there are some issues we need to concern about. First, we cannot apply whole visible band with one PBS. Second, the field of view (acceptance angle) of our PBSs is relatively too small to collect all light emitted from light sources with large divergence angle. To deal with the first issue, we may use red, green and blue light-emitting diodes (LED) for three separated band. The field of view could be improved by ignoring low-energy wavelengths in a Gaussian approximated LED spectrum. At the end of this thesis, we introduced some possible methods to reduce
the divergence angle of LED light sources.
An application of the PBS is backlight units (BLU) in the liquid crystal display (LCD). The usage of PBS can increase light utilization efficiency, and therefore, achieve high efficient energy utilization.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:18:03Z (GMT). No. of bitstreams: 1
ntu-102-R00941063-1.pdf: 5202043 bytes, checksum: cb52b9bda45ae4fda3f3f8778bdc464e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書.................................................................................................................... i
誌謝 ..................................................................................................................................... iii
中文摘要 .............................................................................................................................. v
Abstract ............................................................................................................................. vii
目錄 ..................................................................................................................................... ix
圖目錄 ............................................................................................................................... xiii
表目錄 ............................................................................................................................... xix
第一章、緒論 ...................................................................................................................... 1
第一節、文獻中的極化分光器 ........................................................................................ 1
一、雙折射晶體(Birefringence Crystal) ....................................................................... 1
1. Nicol 極化器/極化分光器 ........................................................... 1
2. Glan–Foucault 極化器/極化分光器 ............................................. 2
二、多層結構(multilayer) ............................................................................................ 5
1. MacNeille 極化分光器 ................................................................. 5
2. 多層雙折射介面(Birefringent Multilayer) .................................... 6
三、光柵結構(grating) ................................................................................................. 7
1. 線柵結構(wire-grid)...................................................................... 8
2. 繞射光柵(diffraction grating) ...................................................... 12
第二節、極化分光器的應用 .......................................................................................... 14
一、液晶顯示器(Liquid Crystal Display, LCD) .......................................................... 14
1. 提高濾色片效率 ......................................................................... 15
2. 提高極化光使用率 ..................................................................... 16
二、立體顯示(3D display).......................................................................................... 18
第三節、論文大綱與編排 ............................................................................................. 20
第二章、理論與數值分析 ................................................................................................. 21
第一節、利特羅裝置的物理機制 .................................................................................. 21
一、光柵中的模態(mode)解 ...................................................................................... 21
1. TE 模態 ...................................................................................... 22
2. TM 模態 ..................................................................................... 23
二、利特羅裝置的物理機制 ...................................................................................... 25
1. 低反射率 .................................................................................... 25
2. 模態分析 .................................................................................... 25
第二節、數值方法 ......................................................................................................... 28
一、平面波展開法 ..................................................................................................... 28
二、特徵值問題(eigenvalue problem) ........................................................................ 29
三、邊界條件 ............................................................................................................. 30
四、收斂性................................................................................................................. 31
五、能量守恆 ............................................................................................................. 31
六、後話 .................................................................................................................... 32
第三節、極化分光器的設計 .......................................................................................... 33
一、相同neff的進一步探討 ........................................................................................ 33
二、設計的方向與參數 ............................................................................................. 35
三、RGB 三色的頻段 ................................................................................................ 37
四、一階繞射角和波長的關係 .................................................................................. 37
五、各個變數的影響 ................................................................................................. 39
1. 光柵深度d.................................................................................. 39
2. 光柵介質n1 ................................................................................. 42
3. 光柵週期Λ .................................................................................. 45
4. 穿透介質nt與入射介質ni ........................................................... 48
六、RGB 極化分光器 ................................................................................................ 49
七、立體角度 ............................................................................................................. 53
第三章、寬頻極化分光器 ................................................................................................. 59
第一節、物理機制 ......................................................................................................... 59
第二節、寬頻極化分光器 ............................................................................................. 61
一、設計的方向與參數 ............................................................................................. 61
二、各個變數的影響 ................................................................................................. 63
1. 光柵深度d.................................................................................. 63
2. 光柵週期Λ .................................................................................. 66
3. 填充因子f .................................................................................. 66
4. 穿透介質nt ................................................................................. 67
三、立體角度 ............................................................................................................. 68
四、稜鏡(prism) ......................................................................................................... 68
五、總結 .................................................................................................................... 70
第四章、光源出光角度與極化分光器集光角度研究 ....................................................... 71
第一節、調整出光角度的可能方式 .............................................................................. 71
一、一般LED 的出光角度 ........................................................................................ 71
二、可能的方式 ......................................................................................................... 72
第二節、高斯近似的發光頻譜 ...................................................................................... 76
一、高斯近似 ............................................................................................................. 76
二、立體角度的轉換 ................................................................................................. 78
三、各個波段的取捨 ................................................................................................. 78
第三節、光使用效率 ..................................................................................................... 83
第五章、結論 .................................................................................................................... 85
附錄一、Glan–Thomson 極化分光器的允許角度範圍 .................................................... 87
附錄二、第二章公式推導與探討 ...................................................................................... 91
附錄三、三維嚴格耦合波法 ........................................................................................... 103
參考文獻 .......................................................................................................................... 115
dc.language.isozh-TW
dc.subject極化分光器zh_TW
dc.subject偏振器zh_TW
dc.subject可見光zh_TW
dc.subject繞射光柵zh_TW
dc.subject利特羅裝置zh_TW
dc.subject高效率偏振器zh_TW
dc.subject嚴格耦合波法zh_TW
dc.subjectRigorous Coupled Wave Analysisen
dc.subjectPolarizeren
dc.subjectHigh efficient polarizeren
dc.subjectPolarization beam splitteren
dc.subjectvisible lighten
dc.subjectDiffraction gratingen
dc.subjectLittrow mountingen
dc.title應用於可見光波段高效率偏振器之設計zh_TW
dc.titleDesign of High Efficient Polarizers for Visible Lighten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王倫,曹恆偉,李三良
dc.subject.keyword偏振器,高效率偏振器,極化分光器,可見光,繞射光柵,利特羅裝置,嚴格耦合波法,zh_TW
dc.subject.keywordPolarizer,High efficient polarizer,Polarization beam splitter,visible light,Diffraction grating,Littrow mounting,Rigorous Coupled Wave Analysis,en
dc.relation.page120
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf5.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved