Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58869
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成
dc.contributor.authorMei-Hui Erhen
dc.contributor.author余美慧zh_TW
dc.date.accessioned2021-06-16T08:35:45Z-
dc.date.available2019-01-27
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-11-15
dc.identifier.citationREFERENCES
(1) Astuti, M. In Superoxide dismutase in Tempe, an antioxidant enzyme, and its implication on health and disease. Reiventing the hidden miracle of Tempe, Proceding International Tempe Symposium, Bali, 1997.
(2) Barnes, S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol. 2010, 8, 89-98.
(3) Bhanja, T.; Kumari, A.; Banerjee, R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol. 2009, 100, 2861-2866.
(4) Bogar, B.; Szakacs, G.; Linden, J. C.; Pandey, A.; Tengerdy, R. P. Optimization of phytase production by solid substrate fermentation. J Ind Microbiol Biot. 2003, 30, 183-189.
(5) Bohn, T.; Davidsson, L.; Walczyk, T.; Hurrell, R. F. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr. 2004, 79, 418-423.
(6) Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J. C.; Gerds, M. L.; Hammes, W. P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; Powell, I. B.; Prajapati, J. B.; Seto, Y.; Ter Schure, E.; Van Boven, A.; Vankerckhoven, V.; Zgoda, A.; Tuijtelaars, S.; Hansen, E. B. Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol. 2012, 154, 87-97.
(7) Bridle, P.; Timberlake, C. F. Anthocyanins as natural food colours - Selected aspects. Food Chem. 1997, 58, 103-109.
(8) Brouns, F. Soya isoflavones: a new and promising ingredient for the health foods sector. Food Res Int. 2002, 35, 187-193.
(9) Cappelletti, V.; Fioravanti, L.; Miodini, P.; Di Fronzo, G. Genistein blocks breast cancer cells in the G(2)M phase of the cell cycle. J Cell Biochem. 2000, 79, 594-600.
(10) Carlson, J. B.; Lersten, N. R., Reproductive morphology. In soybeans: improvement, production and uses. 2nd ed.; Wilcox, J. R., Ed.; ASA, CSSA, and SSSA: Madison,WI, : 1987; p 126-127.
(11) Casey, A.; Walsh, G. Identification and characterization of a phytase of potential commercial interest. J Biotechnol. 2004, 110, 313-322.
(12) Champagne, C. P.; Tompkins, T. A.; Buckley, N. D.; Green-Johnson, J. M. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiol. 2010, 27, 968-972.
(13) Chen, K. I.; Erh, M. H.; Su, N. W.; Liu, W. H.; Chou, C. C.; Cheng, K. C. Soyfoods and soybean products: from traditional use to modern applications. Appl Microbiol Biotechnol. 2012a, 96, 9-22.
(14) Chen, K. I.; Lo, Y. C.; Su, N. W.; Chou, C. C.; Cheng, K. C. Enrichment of two isoflavone aglycones in black soymilk by immobilized beta-glucosidase on solid carriers. J Agric Food Chem. 2012b, 60, 12540-12546.
(15) Chen, K. I.; Lo, Y. C.; Liu, C. W.; Yu, R. C.; Cheng, K. C. Enrichment of isoflavone aglycones in black soymilk by using coffee pulp as an immobilizer for beta-glucosidase. Food Chem. 2013, 139, 79-85.
(16) Chen, L. Y.; Cheng, C. W.; Wang, J. S.; Lin, C. C.; Chang, Y. L.; Li, J. L.; You , S.; Liang, J. Y. Effects of base-catalysis on determination of total polyphenols with Folin-Ciocalteu reagent. MC-Transaction on Biotechnology,. 2012c, 4, 2.
(17) Chen, Y. F.; Lee, S. L.; Chou, C. C. Fermentation with Aspergillus awamori enhanced contents of amino nitrogen and total phenolics as well as the low-density lipoprotein oxidation inhibitory activity of black soybeans. J Agric Food Chem. 2011, 59, 3974-3979.
(18) Cheng, K. C.; Demirci, A.; Catchmark, J. Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol. 2010a, 87, 445-456.
(19) Cheng, K. C.; Demirci, A.; Catchmark, J. M. Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl Microbiol Biotechnol. 2010b, 86, 853-861.
(20) Cheng, K. C.; Lin, J. T.; Wu, J. Y.; Liu, W. H. Isoflavone conversion of black soybean by immobilized Rhizopus spp. Food Biotechnol. 2010c, 24, 312-331.
(21) Cheng, K. C.; Lin, J. T.; Liu, W. H. Extracts from fermented black soybean milk exhibit antioxidant and cytotoxic activities. Food Technol Biotech. 2011, 49, 111-117.
(22) Cheng, K. C.; Wu, J. Y.; Lin, J. T.; Liu, W. H. Isoflavone conversion of black soybean under solid state fermentation by Rhizopus spp. Eur Food Res Technol. 2013, 236, 1107-1113.
(23) Cheng, T. S.; Chen, H. M.; Cheng, L. J.; Lien, T. C. Quantification of isoflavones in domestic and commercial soybean seed in Taiwan. Journal of Scientific and Technological Studies. 2007, 41, 95-113.
(24) Chiarello, M. D.; Guerroue, J. L. L.; Chagas, C. M. S.; Franco, O. L.; Bianchini, E.; Joao, M. J. Influence of heat treatment and grain germination on the isoflavone profile of soy milk. J Food Biochem. 2006, 30, 234-247.
(25) Chien, H. L.; Huang, H. Y.; Chou, C. C. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 2006, 23, 772-778.
(26) Choung, M. G.; Baek, I. Y.; Kang, S. T.; Han, W. Y.; Shin, D. C.; Moon, H. P.; Kang, K. H. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) merr.). J Agric Food Chem. 2001, 49, 5848-5851.
(27) Chun, J.; Kim, G. M.; Lee, K. W.; Choi, I. D.; Kwon, G. H.; Park, J. Y.; Jeong, S. J.; Kim, J. S.; Kim, J. H. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J Food Sci. 2007, 72, 39-44.
(28) Cotter, A.; Cashman, K. D. Genistein appears to prevent early postmenopausal bone loss as effectively as hormone replacement therapy. Nutr Rev. 2003, 61, 346-351.
(29) Cotton, J. C.; Pometto, A. L., 3rd; Gvozdenovic-Jeremic, J. Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl Microbiol Biotechnol. 2001, 57, 626-630.
(30) Das, D.; Gaidhani, N. R.; Murari, K.; Gupta, P. S. Ethanol-production by whole cell immobilization using lignocellulosic materials as solid matrix. J Ferment Bioeng. 1993, 75, 132-137.
(31) Demirci, A.; Pometto, A. L.; Ho, K. L. Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biot. 1997, 19, 299-304.
(32) Diplock, A. T. Antioxidants and disease prevention. Mol Aspects Med. 1994, 15, 293-376.
(33) Diplock, A. T. Defense against reactive oxygen species. Free Radic Res. 1998, 29, 463-467.
(34) Do, M. H.; Lee, S. S.; Jung, P. J.; Lee, M. H. Intake of fruits, vegetables, and soy foods in relation to breast cancer risk in Korean women: a case-control study. Nutr Cancer. 2007, 57, 20-27.
(35) Duenas, M.; Hernandez, T.; Estrella, I. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 2006, 98, 95-103.
(36) Eklund-Jonsson, C.; Sandberg, A. S.; Alminger, M. L. Reduction of phytate content while preserving minerals during whole grain cereal tempe fermentation. J Cereal Sci. 2006, 44, 154-160.
(37) Esaki, H.; Onozaki, H.; Kawakishi, S.; Osawa, T. New antioxidant isolated from tempeh. J Agric Food Chem. 1996, 44, 696-700.
(38) Esaki, H.; Onozaki, H.; Morimitsu, Y.; Kawakishi, S.; Osawa, T. Potent antioxidative isoflavones isolated from soybeans fermented with Aspergillus saitoi. Biosci Biotechnol Biochem. 1998, 62, 740-746.
(39) Esaki, H.; Kawakishi, S.; Morimitsu, Y.; Osawa, T. New potent antioxidative o-dihydroxyisoflavones in fermented Japanese soybean products. Biosci Biotechnol Biochem. 1999, 63, 1637-1639.
(40) Feng, X. M.; Eriksson, A. R.; Schnurer, J. Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation. Int J Food Microbiol. 2005, 104, 249-256.
(41) Feng, X. M.; Passoth, V.; Eklund-Jonsson, C.; Alminger, M. L.; Schnurer, J. Rhizopus oligosporus and yeast co-cultivation during barley tempeh fermentation--nutritional impact and real-time PCR quantification of fungal growth dynamics. Food Microbiol. 2007, 24, 393-402.
(42) Fioravanti, L.; Cappelletti, V.; Miodini, P.; Ronchi, E.; Brivio, M.; Di Fronzo, G. Genistein in the control of breast cancer cell growth: insights into the mechanism of action in vitro. Cancer Lett. 1998, 130, 143-152.
(43) Furuta, S.; Takahashi, M.; Takahata, Y.; Nishiba, Y.; Oki, T.; Masuda, M.; Kobayashi, M.; Suda, I. Radical-scavenging activities of soybean cultivars with black seed coats. Food Sci Technol Res. 2003, 9, 73-75.
(44) Goodman-Gruen, D.; Kritz-Silverstein, D. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J Nutr. 2001, 131, 1202-1206.
(45) Hachmeister, K. A.; Fung, D. Y. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains. Crit Rev Microbiol. 1993, 19, 137-188.
(46) Hallberg, L.; Brune, M.; Rossander, L. Iron-absorption in man - ascorbic-acid and dose-dependent inhibition by phytate. Am J Clin Nutr. 1989, 49, 140-144.
(47) Hansson, G. K.; Hermansson, A. The immune system in atherosclerosis. Nat Immunol. 2011, 12, 204-12.
(48) Hendrich, S.; Zheng, Y. Dose dependence of the effect of gut microbial isoflavone degradation on isoflavone bioavailability in women. FASEB J. 2003, 17, 1097-1097.
(49) Hermana, H.; Karmini, M.; Affandi, E. In Symbiosis of Rhizopus sp. and vitamin B12 forming bacteria and gastrointestinal pathological findings. Reiventing the hidden miracle of tempe, Proceeding International Tempe Symposium, Bali, 1997.
(50) Ho, K. G.; Pometto, A. I.; Hinz, P. N.; Demirci, A. Nutrient leaching and end product accumulation in plastic composite supports for L-(+)-lactic Acid biofilm fermentation. Appl Environ Microbiol. 1997a, 63, 2524-2532.
(51) Ho, K. L.; Pometto, A. L.; Hinz, P. N.; Dickson, J. S.; Demirci, A. Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl Environ Microbiol. 1997b, 63, 2516-2523.
(52) Ho, K. L. G.; Pometto, A. L.; Hinz, P. N. Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl Environ Microbiol. 1997c, 63, 2533-2542.
(53) Hogg, S., Essential microbiology. 1st ed.; John Wiley & Sons Inc,: England, 2005; p 91
(54) Hou, D. X.; Kai, K.; Li, J. J.; Lin, S. G.; Terahara, N.; Wakamatsu, M.; Fujii, M.; Young, M. R.; Colburn, N. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and molecular mechanisms. Carcinogenesis. 2004, 25, 29-36.
(55) Hsieh, W. J.; Chiou, S. T.; Pan, M. H.; Hsieh, S. C. Establishment and evaluation of biotechnological platform for screening health food with anti-inflammation ability. J Tradit Complement Med. 2012, 2, 76-80.
(56) Hu, Y.; Ge, C.; Yuan, W.; Zhu, R.; Zhang, W.; Du, L.; Xue, J. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J Sci Food Agric. 2010, 90, 1194-1202.
(57) Izumi, T.; Piskula, M. K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr. 2000, 130, 1695-1699.
(58) Jin, B.; van Leeuwen, H. J.; Patel, B.; Doelle, H. W.; Yu, Q. Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem. 1999, 34, 59-65.
(59) Juan, M. Y.; Chou, C. C. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 2010, 27, 586-591.
(60) Katsuzaki, H.; Hibasami, H.; Ohwaki, S.; Ishikawa, K.; Imai, K.; Date, K.; Kimura, Y.; Komiya, T. Cyanidin 3-O-beta-D-glucoside isolated from skin of black Glycine max and other anthocyanins isolated from skin of red grape induce apoptosis in human lymphoid leukemia Molt 4B cells. Oncol Rep. 2003, 10, 297-300.
(61) Kawakami, Y.; Tsurugasaki, W.; Nakamura, S.; Osada, K. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J Nutr Biochem. 2005, 16, 205-212.
(62) Kiers, J. L.; Nout, M. J.; Rombouts, F. M.; Nabuurs, M. J.; van der Meulen, J. Inhibition of adhesion of enterotoxigenic Escherichia coli K88 by soya bean tempe. Lett Appl Microbiol. 2002, 35, 311-315.
(63) Kim, J. A.; Jung, W. S.; Chun, S. C.; Yu, C. Y.; Ma, K. H.; Gwag, J. G.; Chung, I. M. A correlation between the level of phenolic compounds and the antioxidant capacity in cooked-with-rice and vegetable soybean (Glycine max L.) varieties. Eur Food Res Technol. 2006, 224, 259-270.
(64) Kim, J. M.; Kim, J. S.; Yoo, H.; Choung, M. G.; Sung, M. K. Effects of black soybean [Glycine max (L.) Merr.] seed coats and its anthocyanidins on colonic inflammation and cell proliferation in vitro and in vivo. J Agric Food Chem. 2008, 56, 8427-8433.
(65) Kobayashi, H.; Yoshida, R.; Kanada, Y.; Fukuda, Y.; Yagyu, T.; Inagaki, K.; Kondo, T.; Kurita, N.; Suzuki, M.; Kanayama, N.; Terao, T. Suppression of lipopolysaccharide-induced cytokine production of gingival fibroblasts by a soybean, Kunitz trypsin inhibitor. J Periodontal Res. 2005, 40, 461-468.
(66) Kuo, L. C.; Cheng, W. Y.; Wu, R. Y.; Huang, C. J.; Lee, K. T. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Appl Microbiol Biotechnol. 2006, 73, 314-320.
(67) Lee, C. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 2005, 90, 735-741.
(68) Lee, I. H.; Hung, Y.-H.; Chou, C.-C. Total phenolic and anthocyanin contents, as well as antioxidant activity, of black bean koji fermented by Aspergillus awamori under different culture conditions. Food Chem. 2007, 104, 936-942.
(69) Lee, I. H.; Hung, Y. H.; Chou, C. C. Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int J Food Microbiol. 2008, 121, 150-156.
(70) Li, S. Z., Black soybeans. Part on cereals. In Ben-Cao-Gang-Mu (An outline treatise of medical herbs written in 1500’s AD). People’s Hygiene Publishing Company: Beijing, China,: 1999; p 1344-1349.
(71) Liao, C. L.; Huang, H. Y.; Sheen, L. Y.; Chou, C. C. Anti-inflammatory activity of soymilk and fermented soymilk prepared with lactic acid bacterium and bifidobacterium. J Food Drug Anal. 2010, 18, 202-210.
(72) Liao, H. F.; Chou, C. J.; Wu, S. H.; Khoo, K. H.; Chen, C. F.; Wang, S. Y. Isolation and characterization of an active compound from black soybean [Glycine max (L.) Merr.] and its effect on proliferation and differentiation of human leukemic U937 cells. Anti-Cancer Drug. 2001, 12, 841-846.
(73) Lydeking-Olsen, E.; Jensen, J. E. B.; Setchell, K. D. R.; Damhus, M.; Jensen, T. H. Isoflavone-rich soymilk prevents bone loss in the lumbar spine of postmenopausal women: A two-year study. J Nutr. 2002, 132, 581.
(74) Marazza, J. A.; Garro, M. S.; de Giori, G. S. Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiol. 2009, 26, 333-339.
(75) Matsuo, M.; Nakamura, N.; Shidoji, Y.; Muto, Y.; Esaki, H.; Osawa, T. Antioxidative mechanism and apoptosis induction by 3-hydroxyanthranilic acid, an antioxidant in Indonesian food Tempeh, in the human hepatoma-derived cell line, HuH-7. J Nutr Sci Vitaminol. 1997, 43, 249-259.
(76) Matsuura, M.; Obata, A. β-glucosidases from soybeans hydrolyze daidzin and genistin. J Food Sci. 1993, 58, 144-147.
(77) Mazza, G.; Miniati, E., Anthocyanins in fruits, vegetables, and grains. CRC Press, Inc. : Boca Raton, FL: 1993.
(78) McCue, P.; Horii, A.; Shetty, K. Solid-state bioconversion of phenolic antioxidants from defatted soybean powders by Rhizopus oligosporus: Role of carbohydrate-cleaving enzymes. J Food Biochem. 2003, 27, 501-514.
(79) Miura, T.; Yuan, L.; Sun, B.; Fujii, H.; Yoshida, M.; Wakame, K.; Kosuna, K. Isoflavone aglycon produced by culture of soybean extracts with basidiomycetes and its anti-angiogenic activity. Biosci Biotechnol Biochem. 2002, 66, 2626-2631.
(80) Murakami, H.; Asakawa, T.; Terao, J.; Matsushita, S. Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agr Biol Chem Tokyo. 1984, 48, 2971-2975.
(81) Murooka, Y.; Yamshita, M. Traditional healthful fermented products of Japan. J Ind Microbiol Biot. 2008, 35, 791-798.
(82) Murphy, P. A.; Song, T.; Buseman, G.; Barua, K.; Beecher, G. R.; Trainer, D.; Holden, J. Isoflavones in retail and institutional soy foods. J Agric Food Chem. 1999, 47, 2697-2704.
(83) Nagata, C.; Takatsuka, N.; Kawakami, N.; Shimizu, H. Soy product intake and hot flashes in Japanese women: results from a community-based prospective study. Am J Epidemiol. 2001, 153, 790-793.
(84) Navarro, A. R.; Rubio, M. C.; Callieri, D. A. S. Production of ethanol by yeasts immobilized in pectin. Eur J Appl Microbiol. 1983, 17, 148-151.
(85) Nizamutdinova, I. T.; Kim, Y. M.; Chung, J. I.; Shin, S. C.; Jeong, Y. K.; Seo, H. G.; Lee, J. H.; Chang, K. C.; Kim, H. J. Anthocyanins from black soybean seed coats preferentially inhibit TNF-alpha-mediated induction of VCAM-1 over ICAM-1 through the regulation of GATAs and IRF-1. J Agric Food Chem. 2009, 57, 7324-7330.
(86) Nowak, J.; Steinkraus, K. H. Effect of tempeh fermentation of peas on their potential flatulence productivity as measured by gas-production and growth of Clostridium-perfringens. Nutr Rep Int. 1988, 38, 1163-1171.
(87) Nurrahman; Astuti, M.; Suparmo; Marsetyawan; Soesatyo, N. H. E. The effect of black soybean tempe and its ethanol extract on lymphocyte proliferation and IgA secrection in samonella typhimurium induced rat. Afr J Food Sci. 2011, 5, 775-779.
(88) Oliveira, M. d. S.; Cipolatti, E. P.; Furlong, E. B.; Soares, L. d. S. Phenolic compounds and antioxidant activity in fermented rice (Oryza sativa) bran. Food Sci Technol (Campinas). 2012, 32, 531-537.
(89) Otieno, D. O.; Ashton, J. F.; Shah, N. P. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res Int. 2006, 39, 394-407.
(90) Ozsoy, H. D.; Kumbur, H.; Saha, B.; van Leeuwen, J. H. Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(II) ions removal from the aqueous solutions. Bioresour Technol. 2008, 99, 4943-4948.
(91) Park, K. Y.; Jung, K. O.; Rhee, S. H.; Choi, Y. H. Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mutat Res-Fund Mol M. 2003, 523, 43-53.
(92) Park, K. Y.; Kwon, S. H.; Ahn, I. S.; Kim, S. O.; Kong, C. S.; Chung, H. Y.; Do, M. S. Weight reduction and lipid lowering effects of black soybean anthocyanins in rats fed high fat diet. FASEB J. 2007, 21, 1080.
(93) Petri, G.; Krawczyk, U.; Kery, A. Spectrophotometric and chromatographic investigation of bilberry anthocyanins for quantification purposes. Microchem J. 1997, 55, 12-23.
(94) Pham, T. T.; Shah, N. P. Effect of lactulose on biotransformation of isoflavone glycosides to aglycones in soymilk by lactobacilli. J Food Sci. 2008, 73, 158-165.
(95) Pongtharangkul, T.; Demirci, A. Effects of pH profiles on nisin production in biofilm reactor. Appl Microbiol Biotechnol. 2006a, 71, 804-811.
(96) Pongtharangkul, T.; Demirci, A. Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors. Appl Microbiol Biotechnol. 2006b, 73, 73-79.
(97) Pongtharangkul, T.; Demirci, A. Evaluation of culture medium for nisin production in a repeated-batch biofilm reactor. Biotechnol Progr. 2006c, 22, 217-224.
(98) Rekha, C. R.; Vijayalakshmi, G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol. 2010, 109, 1198-1208.
(99) Renault, J. H.; Thepenier, P.; ZechesHanrot, M.; LeMenOlivier, L.; Durand, A.; Foucault, A.; Margraff, R. Preparative separation of anthocyanins by gradient elution centrifugal partition chromatography. J Chromatogr A. 1997, 763, 345-352.
(100) Ruiz-Larrea, M. B.; Mohan, A. R.; Paganga, G.; Miller, N. J.; Bolwell, G. P.; Rice-Evans, C. A. Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res. 1997, 26, 63-70.
(101) Ryan-Borchers, T. A.; Park, J. S.; Chew, B. P.; McGuire, M. K.; Fournier, L. R.; Beerman, K. A. Soy isoflavones modulate immune function in healthy postmenopausal women. Am J Clin Nutr. 2006, 83, 1118-11125.
(102) Ryu, Y. W.; Navarro, J. M.; Durand, G. Comparative-study of ethanol-production by an immobilized yeast in a tubular reactor and in a multistage reactor. Eur J Appl Microbiol. 1982, 15, 1-8.
(103) Sanchez, C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009, 27, 185-194.
(104) Setchell, K. D.; Brown, N. M.; Zimmer-Nechemias, L.; Brashear, W. T.; Wolfe, B. E.; Kirschner, A. S.; Heubi, J. E. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr. 2002, 76, 447-453.
(105) Setchell, K. D. R.; Faughnan, M. S.; Avades, T.; Zimmer-Nechemias, L.; Brown, N. M.; Wolfe, B. E.; Brashear, W. T.; Desai, P.; Oldfield, M. F.; Botting, N. P.; Cassidy, A. Comparing the pharmacokinetics of daidzein and genistein with the use of C-13-labeled tracers in premenopausal women. Am J Clin Nutr. 2003, 77, 411-419.
(106) Shahidi, F.; Wanasundara, P. K. Phenolic antioxidants. Crit Rev Food Sci Nutr. 1992, 32, 67-103.
(107) Sharma, R.; Sarbhoy, A. K. Tempeh - a fermented food from soybean. Curr Sci India. 1984, 53, 325-326.
(108) Shinomiya, K.; Tokunaga, S.; Shigemoto, Y.; Kamei, C. Effect of seed coat extract from black soybeans on radial maze performance in rats. Clin Exp Pharmacol Physiol. 2005, 32, 757-760.
(109) Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152-178.
(110) Slavin, M.; Kenworthy, W.; Yu, L. L. Antioxidant properties, phytochemical composition, and antiproliferative activity of Maryland-grown soybeans with colored seed coats. J Agric Food Chem. 2009, 57, 11174-11185.
(111) Steinkraus, K. H. Tempeh - Asian example of appropriate intermediate food-technology. Food Technol-Chicago. 1978, 32, 79-80.
(112) Suparmo; Markakis, P. Tempeh prepared from germinated soybeans. J Food Sci. 1987, 52, 1736-1737.
(113) Takahashi, R.; Ohmori, R.; Kiyose, C.; Momiyama, Y.; Ohsuzu, F.; Kondo, K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J Agric Food Chem. 2005, 53, 4578-4582.
(114) Takaya, N.; Yamazaki, D.; Horiuchi, H.; Ohta, A.; Takagi, M. Intracellular chitinase gene from Rhizopus oligosporus: molecular cloning and characterization. Microbiol. 1998, 144, 2647-2654.
(115) Tang, A. L.; Shah, N. P.; Wilcox, G.; Walker, K. Z.; Stojanovska, L. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. J Food Sci. 2007, 72, 431-436.
(116) Tejada-Simon, M. V.; Pestka, J. J. Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot. 1999, 62, 1435-1444.
(117) Terzic, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology. 2010, 138, 2101-2114.
(118) Todd, J. J.; Vodkin, L. O. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 1993, 102, 663-670.
(119) Tsangalis, D.; Ashton, J. F.; McGill, A. E. J.; Shah, N. P. Enzymic transformation of isoflavone phytoestrogens in soymilk by beta-glucosidase-producing bifidobacteria. J Food Sci. 2002, 67, 3104-3113.
(120) Tsangalis, D.; Ashton, J. F.; Stojanovska, L.; Wilcox, G.; Shah, N. P. Development of an isoflavone aglycone-enriched soymilk using soy germ, soy protein isolate and bifidobacteria. Food Res Int. 2004, 37, 301-312.
(121) Victor, R. P.; Ronald, R. W.; Vinood, B. P., Nuts and seeds in health and disease prevention. Elsevier Inc: 2011; p 229-236.
(122) Wang, H. J.; Murphy, P. A. Isoflavone content in commercial soybean foods. J Agric Food Chem. 1994, 42, 1666-1673.
(123) Wang, H. J.; Murphy, P. A. Mass balance study of isoflavones during soybean processing. J Agric Food Chem. 1996, 44, 2377-2383.
(124) Wei, Q. K.; Chen, T. R.; Chen, J. T. Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. Int J Food Microbiol. 2007, 117, 120-124.
(125) Wiesel, I.; Rehm, H. J.; Bisping, B. Improvement of tempe fermentations by application of mixed cultures consisting of Rhizopus sp. and bacterial strains. Appl Microbiol Biotechnol. 1997, 47, 218-225.
(126) Xu, B.; Chang, S. K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J Agric Food Chem. 2008a, 56, 7165-7175.
(127) Xu, B. J.; Yuan, S. H.; Chang, S. K. C. Comparative studies on the antioxidant activities of nine common food legumes against copper-induced human low-density lipoprotein oxidation In Vitro. J Food Sci. 2007, 72, 522-527.
(128) Xu, B. J.; Chang, S. K. C. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J Agric Food Chem. 2008b, 56, 8365-8373.
(129) Xu, B. J.; Chang, S. K. C. Characterization of phenolic substances and antioxidant properties of food soybeans grown in the North Dakota-Minnesota region. J Agric Food Chem. 2008c, 56, 9102-9113.
(130) Xu, B. J.; Chang, S. K. C. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (phaseolus vulgaris l.) as affected by thermal processing. J Agric Food Chem. 2009, 57, 4754-4764.
(131) Yamada, O.; Sakamoto, K.; Tominaga, M.; Nakayama, T.; Koseki, T.; Fujita, A.; Akita, O. Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631. Biosci Biotechnol Biochem. 2005, 69, 477-482.
(132) Yoshida, K.; Sato, Y.; Okuno, R.; Kameda, K.; Isobe, M.; Kondo, T. Structural analysis ans measurement of anthocyanin from colored seed coats of Vigna phaseolus, and Glycine legumes. Biosci Biotechnol Biochem. 1996, 60, 589-593.
(133) Zhang, R. F.; Zhang, F. X.; Zhang, M. W.; Wei, Z. C.; Yang, C. Y.; Zhang, Y.; Tang, X. J.; Deng, Y. Y.; Chi, J. W. Phenolic composition and antioxidant activity in seed coats of 60 chinese black soybean (Glycine max L. Merr.) varieties. J Agric Food Chem. 2011, 59, 5935-5944.
(134) Zheng, Y.; Hu, J.; Murphy, P. A.; Alekel, D. L.; Franke, W. D.; Hendrich, S. Rapid gut transit time and slow fecal isoflavone disappearance phenotype are associated with greater genistein bioavailability in women. J Nutr. 2003, 133, 3110-3116.
(135) Zheng, Y. L.; Lee, S. O.; Hu, J.; Verbruggen, M.; Murphy, P. A.; Hendrich, S. Comparative bioavailability of isoflavone aglycones and glucosides in women. FASEB J. 2002, 16, 1008.
(136) Zou, Y.; Chang, S. K. Effect of black soybean extract on the suppression of the proliferation of human AGS gastric cancer cells via the induction of apoptosis. J Agric Food Chem. 2011, 59, 4597-605.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58869-
dc.description.abstract近年來,許多研究結果顯示去醣基大豆異黄酮之生理活性及吸收效果皆强於帶醣基之大豆異黄酮。因此,學者們致力於探討如何利用固態發酵進行大規模的大豆異黃酮之生物轉化。 然而,費時及難以量化生產是其所面臨的難題。 Plastic composite support (PCS), 是一種利用聚丙烯經高溫擠壓將營養物質包覆其中的载體。過去研究顯示,利用PCS作為固定化載體於重複批次及連續發酵中, 確實可以增加發酵產物產量。 本研究之目的主要是評估利用PCS讓根黴菌Rhizopus oligosporus NTU 5附著後進行黑豆漿發酵之效果, 並探討在發酵過程中pH之控制與否對黑豆漿的異黃酮去醣基化效率之影響, 以及分析發酵黑豆漿之β-glucosidase活性、清除自由基能力、總多酚含量及抗發炎能力。在進行生物反應器發酵前,本實驗探討了4種具有不同營養成分的PCS其讓根黴菌附著的能力。這4種PCS分別命名為S, SF+, SFYB+, 和SFYBR,其英文字母符號代表其PCS所含有的營養成分:S代表大豆殼粉、F代表脫脂大豆粉、Y代表酵母提取物、B代表蛋白腖、R代表豬紅血球粉及+代表礦物鹽 )。 結果顯示, 在四種PCS當中,S明顯地具有最多菌絲附著(0.237 ± 0.022 g)。因此,S被選用作為固定在生物反應器的PCS。本實驗研究所使用的黑豆漿含有大約190 mg/ L 的異黃酮總量. 研究結果顯示, 相較於控制pH於pH 6.5, 發酵過程中不控制pH具有比較好的異黃酮去醣基化效率。此外,利用PCS讓根黴菌菌絲附著不但可以持續釋放出β-glucosidase,提高異黃酮去醣基化效率,並將其去醣基化所需的時間縮短,可在8小時完成,其穩定性可達34天並完成了26批黑豆漿發酵。發酵黑豆漿的總多酚含量比未發酵黑豆漿多(0.042 ± 0.015 mg GAE/ mL sample),而不控制pH發酵黑豆漿的總多酚含量(範圍從 0.147 到 0.340 mg GAE/ mL sample) 比控制pH發酵黑豆漿的總多酚含量多(範圍從0.121 到 0.151 mg GAE/ mL sample)。然而,第22批發酵了8小時的豆漿具有最高的DPPH清除自由基能力(54.66 ± 0.39%), 但卻不是擁有最多的總多酚含量(0.249 ± 0.002 mg GAE/ mL sample)。至於抗發炎能力分析,發酵黑豆漿粗萃取物無法抑制發炎因子iNOS 和COX-2,需做進一步之分離純化分析。zh_TW
dc.description.abstractNumerous studies have revealed that isoflavones in their aglycone forms exhibit higher biological activity and are metabolically active. Isoflavone conversion of soybeans has been conducted using solid-state fermentation for years. However, the limitations are time consuming and the difficulty in scaling up for food industry. Plastic composite support (PCS), an extrusion product of a mixture between polypropylene and nutritious compounds, has been used to enhance various products in repeated-batch and continuous fermentation. The goal of this study is to evaluate the effects of PCS implementation on isoflavone deglycosylation in black soymilk fermented by Rhizopus oligosporus NTU 5, which is divided into two specific objectives: to evaluate the isoflavone deglycosylation of fermented black soymilk with and without pH control in PCS bioreactors, and to analyze the β-glucosidase activity, total phenolic content, antioxidant and anti-inflammatory activities in fermented black soymilk. Prior to bioreactor fermentation, optimal PCS for mycelia immobilization was selected by test tube cultivation. Four types of PCS were using namely S, SF+, SFYB+, and SFYBR, in which alphabetic character on behalf of the nutrients contained in PCS: S represents dried ground soybean hulls, F represents defatted soybean flour, Y represents yeast extract ardamine, B represents peptone, R represents dried porcine red blood cell, and + represents mineral salts. Significant results showed that S possessed the most mycelium weight (0.237 ± 0.022 g, p < 0.05) among the PCS studied, therefore, was selected for further study. In this study, non-fermented black soymilk contained proximately 190 mg/ L of total isoflavone content. It was found that the non pH control fermentation has better efficiency of isoflavone bioconversion when compared with the one with pH control at pH 6.5. Thus, non pH control fermentation was further studied for its long run fermentation efficiency. PCS bioreactor indeed enhances the isoflavone bioconversion process by continuously releasing β-glucosidase, which can be completed between 8 to 36 h. PCS bioreactor also provides a long run repeated batch fermentation which can be sustained for 34 days for 26 batches of black soymilk fermentation. A higher total phenolic content was found in fermented BSM from both fermentation conditions than non-fermented BSM (0.042 ± 0.015 mg gallic acid equivalents (GAE)/ mL) in present study. Obviously, the non pH control fermented BSM (range from 0.147 to 0.340 mg GAE/ mL sample) had higher total phenolic content compared to the one with pH control fermentation (range from 0.121 to 0.151 mg GAE/ mL sample). Even more remarkable was the black soymilk from 22nd batch with 8 h fermentation has the highest DPPH radical scavenging effect (54.66 ± 0.39%), yet its total phenolic content was 0.249 ± 0.002 mg GAE/ mL sample, which did not contain the highest total phenolic content among the samples studied. None of black soymilk sample fermented by R. oligosporus possessed with inhibitory effect that could suppress the protein expression of inflammatory genes inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Purification and fractionation of fermented black soymilk crude extract merit for further cell-based investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:35:45Z (GMT). No. of bitstreams: 1
ntu-102-R00641044-1.pdf: 2430049 bytes, checksum: 8a2dc4031dc89b72c334e05275f5d55b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsCONTENTS
摘要 I
ABSTRACT III
CONTENTS VI
LIST OF FIGURES XI
LIST OF TABLES XIII
CHAPTER I 1
INTRODUCTION 1
1.1 Background 1
CHAPTER II 8
LITERATURE REVIEW 8
2.1 Black Soybean 8
2.1.1 Overview of Black Soybean 8
2.1.2 Biological Activities of Black Soybean 10
2.2 Anthocyanin 12
2.3 Isoflavone 19
2.4 Fermented Soybean Based Products 24
2.5 Rhizopus oligosporus 28
2.6 Plastic Composite Support 30
CHAPTER III 31
METHODOLOGY 31
3.1 Chemicals 31
3.2 Microorganisms 32
3.3 Suspension Spores Preparation 32
3.4 Preparation of Black Soymilk 33
3.5 Preparation of Plastic Composite Support 33
3.6 Test Tube Cultivation for Optimal PCS Selection 37
3.7 Measurement of Mycelia Formation 39
3.8 Black Soymilk Fermentation in PCS Bioreactor 39
3.8.1 Stage 1 - Bioreactor with Optimal PCS Preparation 41
3.8.2 Stage 2 - PDB Cultivation for Mycelia Immobilization 41
3.8.3 Stage 3 - Black Soymilk Batch Fermentation 42
3.9 Assay of β-glucosidase Activity 42
3.10 Extraction of Isoflavones 43
3.11 Analysis of Isoflavones 44
3.12 DPPH Radical Scavenging Activity 47
3.13 Assay for Total Phenolic Content 47
3.14 Assay for Anti-Inflammatory Property 48
3.14.1 Sample Preparation 48
3.14.2 Cell Treatment Procedure 48
3.14.3 Luciferase Assay 49
3.14.4 Protein Normalization 49
3.15 Statistics 50
CHAPTER IV 51
RESULTS AND DISCUSSION 51
4.1 Optimal PCS Selection 51
4.2 Determination of Optimal Fermentation Condition for Isoflavone Deglycosylation 53
4.2.1 Isoflavone Contents of Black Soymilk Fermented with and without pH Control in the PCS Bioreactors 53
4.2.2 β-glucosidase Activity of Fermented Black Soymilk 65
4.2.3 DPPH Radical Scavenging Effect 68
4.2.4 Total Phenolic Content 72
4.2.5 Anti-inflammatory Property 78
CHAPTER V 82
CONCLUSION 82
REFERENCES 84
Curriculum Vitae 99
dc.language.isoen
dc.title利用PCS生物反應器以Rhizopus oligosporus NTU 5進行黑豆漿發酵並探討異黃酮去醣基化效率及生理活性之研究zh_TW
dc.titleStudies on Isoflavone Deglycosylation and Bioactivities in Black Soymilk Fermented by R. oligosporus NTU 5 in a Plastic Composite Support (PCS) Bioreactoren
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee周正俊,游若?,劉啟德,陳冠翰
dc.subject.keyword黑豆,黑豆漿發酵,大豆異黃酮,Rhizopus oligosporus,β-glucosidase,plastic composite support,抗氧化,抗發炎,生物活性,zh_TW
dc.subject.keywordBlack soybean,black soymilk fermentation,isoflavone,Rhizopus oligosporus,β-glucosidase,plastic composite support,antioxidant,anti-inflammatory,bioactivities,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2013-11-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved