請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文彬(Wen-Bin Liau) | |
| dc.contributor.author | Che-Wei Lee | en |
| dc.contributor.author | 李哲瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:34:18Z | - |
| dc.date.available | 2023-12-31 | |
| dc.date.copyright | 2014-03-18 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-11-28 | |
| dc.identifier.citation | [1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x”中國化工學會,化學通訊﹐ no. 16﹐ pp. 578–580﹐Jan. 1977.
[2] A. G. MacDiarmid and A. J. Heeger, “Organic metals and semiconductors: The chemistry of polyacetylene,(CH)x, and its derivatives” Synth. Met., vol. 1, no. 2, pp. 101–118, 1980. [3] A. G. MacDiarmid, “Synthetic metals: A novel role for organic polymers (Nobel lecture)” Angew. Chem. Int. Ed., vol. 40, no. 14, pp. 2581–2590, 2001. [4] B. Norden and E. KRUTMEIJER, “Conductive Polymers” R. Swed. Acad. Sci. Nobel Prize Chem., 2000. [5] J. L. Bredas and G. B. Street, “Polarons, bipolarons, and solitons in conducting polymers” Acc. Chem. Res., vol. 18, no. 10, pp. 309–315, 1985. [6] D. D. Bradley, “Elctroluminescence: A bright future for conjugated polymers?” Adv. Mater., vol. 4, no. 11, pp. 756–758, 1992. [7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature, vol. 347, no. 6293, p. 539–541, Oct. 1990. [8] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface” J. Appl. Phys., vol. 54, no. 6, p. 3255, 1983. [9 ] H. Antoniadis, M. A. Abkowitz, J. A. Osaheni, S. A. Jenekhe, and M. Stolka, “Generation and drift of photocarriers in a conjugated ladder polymer” Synth. Met., vol. 60, no. 2, pp. 149–157, 1993. [10] W. Rieβ, S. Karg, V. Dyakonov, M. Meier, and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV Schottky diodes” J. Lumin., vol. 60, pp. 906–911, 1994. [11 ] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells” Appl. Phys. Lett., vol. 62, no. 6, pp. 585–587, Feb. 1993. [12] G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim, and J. C. Jo, “Effect of Alkoxy Substitution on Photophysical Properties of Poly(p-phenylenevinylene)” Jpn. J. Appl. Phys., vol. 35, no. Part 1, No. 1A, pp. 114–119, 1996. [13] J. W.-P. Lin and L. P. Dudek, “Synthesis and properties of poly(2,5-thienylene)” J. Polym. Sci. Polym. Chem. Ed., vol. 18, no. 9, pp. 2869–2873, 1980. [14] R. L. Elsenbaumer, K. Y. Jen, and R. Oboodi, “Processible and environmentally stable conducting polymers” Synth. Met., vol. 15, no. 2–3, pp. 169–174, Jul. 1986. [15] R.Sugimoto, S. Takeda, H. B. Gu, and K. Yoshino, “FeCl3” Chem Express, vol. 1, p. 635, 1986. [16] M. Sato and H. Morii, “Nuclear magnetic resonance studies on electrochemically prepared poly(3-dodecylthiophene)” Macromolecules, vol. 24, no. 5, pp. 1196–1200, Mar. 1991. [17] R. D. McCullough, R. D. Lowe, M. Jayaraman, and D. L. Anderson, “Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes)” J. Org. Chem., vol. 58, no. 4, pp. 904–912, Feb. 1993. [18] T.-A. Chen, X. Wu, and R. D. Rieke, “Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties” J. Am. Chem. Soc., vol. 117, no. 1, pp. 233–244, Jan. 1995. [19] R. S. Loewe, S. M. Khersonsky, and R. D. McCullough, “A Simple Method to Prepare Head-to-Tail Coupled, Regioregular Poly(3-alkylthiophenes) Using Grignard Metathesis” Adv. Mater., vol. 11, no. 3, pp. 250–253, 1999. [20] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, and R. D. McCullough, “Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivity” Macromolecules, vol. 34, no. 13, pp. 4324–4333, Jun. 2001. [21] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment” J. Phys. Chem. B, vol. 107, no. 3, pp. 668–677, Jan. 2003. [22] K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing” Annu. Rev. Phys. Chem., vol. 58, no. 1, pp. 267–297, May 2007. [23] 裘性天and黃亭凱, “特殊形貌銅與銀奈米材料製備之簡介” Chem. Chin. Chem. Soc., vol. 65, pp. 9–16, 2007. [24] E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire” Nature, vol. 391, no. 6669, pp. 775–778, 1998. [25] K.-J. Kim, E.-S. Lee, and Y.-U. Kwon, “Syntheses of micrometer-long Pt and Ag nanowires through SBA-15 templating” J. Nanoparticle Res., vol. 14, no. 12, Nov. 2012. [26] T.-K. Chen, W.-T. Chen, M.-C. Yang, and M.-S. Wong, “Thermal-induced formation of silver nanowires on titanium dioxide thin films” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., vol. 23, no. 6, p. 2261, 2005. [27] S. Kundu, D. Huitink, K. Wang, and H. Liang, “Photochemical formation of electrically conductive silver nanowires on polymer scaffolds” J. Colloid Interface Sci., vol. 344, no. 2, pp. 334–342, Apr. 2010. [28] C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires” Adv. Mater., vol. 14, no. 1, p. 80, 2002. [29] Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence” Nano Lett., vol. 3, no. 7, pp. 955–960, Jul. 2003. [30] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, “Uniform Silver Nanowires Synthesis by Reducing AgNO 3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)” Chem. Mater., vol. 14, no. 11, pp. 4736–4745, Nov. 2002. [31] H. Mao, J. Feng, X. Ma, C. Wu, and X. Zhao, “One-dimensional silver nanowires synthesized by self-seeding polyol process” J. Nanoparticle Res., vol. 14, no. 6, Jun. 2012. [32] Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction” J. Colloid Interface Sci., vol. 352, no. 2, pp. 285–291, Dec. 2010. [33] T.-K. Huang, T.-H. Cheng, M.-Y. Yen, W.-H. Hsiao, L.-S. Wang, F.-R. Chen, J.-J. Kai, C.-Y. Lee, and H.-T. Chiu, “Growth of Cu Nanobelt and Ag Belt-Like Materials by Surfactant-Assisted Galvanic Reductions” Langmuir, vol. 23, no. 10, pp. 5722–5726, May 2007. [34] H. Choi and S.-H. Park, “Seedless growth of free-standing copper nanowires by chemical vapor deposition” J. Am. Chem. Soc., vol. 126, no. 20, pp. 6248–6249, 2004. [35] J.-H. Wang, T.-H. Yang, W.-W. Wu, L.-J. Chen, C.-H. Chen, and C.-J. Chu, “Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics” Nanotechnology, vol. 17, no. 3, pp. 719–722, Feb. 2006. [36] M.-Y. Yen, C.-W. Chiu, C.-H. Hsia, F.-R. Chen, J.-J. Kai, C.-Y. Lee, and H.-T. Chiu, “Synthesis of Cable-Like Copper Nanowires” Adv. Mater., vol. 15, no. 3, pp. 235–237, 2003. [37] C.-H. Hsia, M.-Y. Yen, C.-C. Lin, H.-T. Chiu, and C.-Y. Lee, “In Situ Generation of the Silica Shell Layer − Key Factor to the Simple High Yield Synthesis of Silver Nanowires” J. Am. Chem. Soc., vol. 125, no. 33, pp. 9940–9941, Aug. 2003. [38] D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, “Electrical and optical design and characterisation of regioregular poly(3-hexylthiophene-2,5diyl)/fullerene-based heterojunction polymer solar cells” Synth. Met., vol. 138, no. 1–2, pp. 299–304, Jun. 2003. [39] M. Y. Lebedev, M. V. Lauritzen, A. E. Curzon, and S. Holdcroft, “Solvato-controlled doping of conducting polymers” Chem. Mater., vol. 10, no. 1, pp. 156–163, 1998. [40] P. Xu, S.-H. Jeon, H.-T. Chen, H. Luo, G. Zou, Q. Jia, M. Anghel, C. Teuscher, D. J. Williams, B. Zhang, X. Han, and H.-L. Wang, “Facile Synthesis and Electrical Properties of Silver Wires through Chemical Reduction by Polyaniline” J. Phys. Chem. C, vol. 114, no. 50, pp. 22147–22154, Dec. 2010. [41] F. Machui, S. Langner, X. Zhu, S. Abbott, and C. J. Brabec, “Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance” Sol. Energy Mater. Sol. Cells, vol. 100, pp. 138–146, May 2012. [42] H. Shimizu, M. Yamada, R. Wada, and M. Okabe, “Preparation and Characterization of Water Self-dispersible Poly(3-hexylthiophene) Particles” Polym. J., vol. 40, no. 1, pp. 33–36, 2008. [43] J. Clark, C. Silva, R. Friend, and F. Spano, “Role of Intermolecular Coupling in the Photophysics of Disordered Organic Semiconductors: Aggregate Emission in Regioregular Polythiophene” Phys. Rev. Lett., vol. 98, no. 20, May 2007. [44] F. C. Spano, J. Clark, C. Silva, and R. H. Friend, “Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films” J. Chem. Phys., vol. 130, no. 7, p. 074904, Feb. 2009. [45] “ICDD” JCPDS. [46] D. Dudenko, A. Kiersnowski, J. Shu, W. Pisula, D. Sebastiani, H. W. Spiess, and M. R. Hansen, “A Strategy for Revealing the Packing in Semicrystalline π-Conjugated Polymers: Crystal Structure of Bulk Poly-3-hexyl-thiophene (P3HT)” Angew. Chem. Int. Ed., vol. 51, no. 44, pp. 11068–11072, Oct. 2012. [47] C. Janiak, “A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands”化學學會雜誌,道爾頓, no. 21, pp. 3885–3896, Jan. 2000. [48] Richard D. McCullough, Stephanie Tristram-Nagle, Shawn P. Williams, Renae D. Lowe ,and Manikandan Jayaraman, “Self-orienting Head-to-Tail Poly( 3-alkylthiophenes): New Insights on Structure-Property Relationships in Conducting Polymers” J Am Chem Soc, vol. 115, pp. 4910–4911, 1993. [49] T. Thurn-Albrecht, R. Thomann, T. Heinzel, and S. Hugger, “Semicrystalline morphology in thin films of poly(3-hexylthiophene)” Colloid Polym. Sci., vol. 282, no. 8, pp. 932–938, Jun. 2004. [50] X. Wang, J. Ru, S. Ochiai, Y. Yamada, Y. Uchida, H. Furuhashi, T. Mizutani, Y. Cui, and J. Liu, “Thickness dependence of third-harmonic generation from self-assembled regioregular poly (3-hexylthiophene) thin films on quartz glasses with different surfaces” J. Nonlinear Opt. Phys. Mater., vol. 17, no. 04, pp. 451–463, 2008. [51] D. B. Williams and C. B. Carter, “The Transmission Electron Microscope” in Transmission Electron Microscopy, Springer US, 1996, pp. 3–17. [52] V. Germain, J. Li, D. Ingert, Z. L. Wang, and M. P. Pileni, “Stacking Faults in Formation of Silver Nanodisks” J. Phys. Chem. B, vol. 107, no. 34, pp. 8717–8720, Aug. 2003. [53] J. C. Heyraud and J. J. Metois, “Anomalous 13 422 diffraction spots from {111} flat gold crystallites:(111) surface reconstruction and moire fringes between the surface and the bulk” Surf. Sci., vol. 100, no. 3, pp. 519–528, 1980. [54] M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz, and J. Pielichowski, “Effect of molecular weight on spectroscopic and spectroelectrochemical properties of regioregular poly (3-hexylthiophene)” Macromolecules, vol. 31, no. 15, pp. 5051–5058, 1998. [55] S. Hotta, S. Rughooputh, A. J. Heeger, and F. Wudl, “Spectroscopic studies of soluble poly (3-alkylthienylenes)” Macromolecules, vol. 20, no. 1, pp. 212–215, 1987. [56] “National Institute of Standards and Technology(NIST)” http://webbook.nist.gov/cgi/cbook.cgi?ID=C128370&Mask=400. [57] V. Gvozdić, V. Tomivsić, V. Butorac, and V. Simeon, “Association of Nitrate Ion with Metal Cations in Aqueous Solution: a UV-Vis Spectrometric and Factor-Analytical Study” Croat. Chem. Acta, vol. 82, no. 2, pp. 553–559, 2009. [58] R. K. Singh, J. Kumar, R. Singh, R. Kant, R. C. Rastogi, S. Chand, and V. Kumar, “Structure–conductivity correlation in ferric chloride-doped poly(3-hexylthiophene)” New J. Phys., vol. 8, no. 7, pp. 112–112, Jul. 2006. [59] 吳柏徵,“聚苯胺-聚苯乙烯磺酸與銀金屬複合材料之製備與銀金屬形態探討” 碩士論文,國立台灣大學高分子所,2012. [60] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of Mesoscale Crystalline Structure on the Field-Effect Mobility of Regioregular Poly(3-hexyl thiophene) in Thin-Film Transistors” Adv. Funct. Mater., vol. 15, no. 4, pp. 671–676, Apr. 2005. [61] S. N. Magonov, V. Elings, and M.-H. Whangbo, “Phase imaging and stiffness in tapping-mode atomic force microscopy” Surf. Sci., vol. 375, pp. L385–L391, Aug. 1996. [62] A. Rodrigues, M. C. R. Castro, A. S. F. Farinha, M. Oliveira, J. P. C. Tome, A. V. Machado, M. M. M. Raposo, L. Hilliou, and G. Bernardo, “Thermal stability of P3HT and P3HT:PCBM blends in the molten state” Polym. Test., vol. 32, no. 7, pp. 1192–1201, Oct. 2013. [63] P. Kuisma-Kursula, “Accuracy, Precision and Detection Limits of SEM-WDS, SEM-EDS and PIXE in the Multielemental Analysis of Medieval Glass” X-Ray Spectrom., vol. 29, no. 1, pp. 111–118, 2000. [64] R. Jin, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms” Science, vol. 294, no. 5548, pp. 1901–1903, Nov. 2001. [65] S. Chen and D. L. Carroll, “Synthesis and Characterization of Truncated Triangular Silver Nanoplates” Nano Lett., vol. 2, no. 9, pp. 1003–1007, Sep. 2002. [66] I. Pastoriza-Santos and L. M. Liz-Marzan, “Synthesis of Silver Nanoprisms in DMF” Nano Lett., vol. 2, no. 8, pp. 903–905, Aug. 2002. [67] J. Du, B. Han, Z. Liu, Y. Liu, and D. J. Kang, “Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple Solvent−Thermal Method” Cryst. Growth Des., vol. 7, no. 5, pp. 900–904, May 2007. [68] Y. Sun, “Direct Growth of Dense, Pristine Metal Nanoplates with Well-Controlled Dimensions on Semiconductor Substrates” Chem. Mater. vol. 19, no. 24, pp. 5845–5847, Nov. 2007. [69] G. Liu, W. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate” Cryst. Growth Des., vol. 8, no. 8, pp. 2748–2752, Aug. 2008. [70] N. D. Treat, M. A. Brady, G. Smith, M. F. Toney, E. J. Kramer, C. J. Hawker, and M. L. Chabinyc, “Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend” Adv. Energy Mater., vol. 1, no. 1, pp. 82–89, Jan. 2011. [71] J.-M. Zhang, F. Ma, and K.-W. Xu, “Calculation of the surface energy of FCC metals with modified embedded-atom method” Appl. Surf. Sci., vol. 229, no. 1–4, pp. 34–42, May 2004. [72] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. Janssen, E. W. Meijer, and P. Herwig, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers” Nature, vol. 401, no. 6754, pp. 685–688, 1999. [73] J.-C. Bolsee, W. D. Oosterbaan, L. Lutsen, D. Vanderzande, and J. Manca, “CAFM on conjugated polymer nanofibers: Capable of assessing one fiber mobility” Org. Electron., vol. 12, no. 12, pp. 2084–2089, Dec. 2011. [74] M. V. Lauritzen, “Solvato-controlled Doping of Poly (3-alkylthiophene) s and Other Conjugated Polymers Using Silver (I) Triflate” Simon Fraser University, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58844 | - |
| dc.description.abstract | 本論文中,我們利用聚(3-己基噻吩) (P3HT)的氧化還原性質使銀離子在P3HT薄膜上還原成銀金屬。另一方面,利用四氫呋喃(Tetrahydrofuran,THF)對P3HT產生膨潤作用並且使P3HT的結構產生再重組(reorganization)。利用此重組的型態可以去控制銀金屬的成長及形態變化。因此我們利用水及THF製備成共溶劑(co-solvent),去調控P3HT薄膜表面的性質並進一步產生特殊的銀金屬形態。
簡言之,P3HT的薄膜在經過THF膨潤後,表面後會產生帶狀重組結構,隨即銀離子還原到其帶狀結構上形成銀金屬。利用此方法可以簡易製備出寬度為100nm-2μm且長可達數百μm以上的長帶狀銀結構。經TEM繞射鑑定後發現此種銀的結構擁有高度的晶體位向排列一致性,主要晶面為呈現為{111}面族以及<110>的晶面成長方向並且形成一維的帶狀結構。這種長帶狀結構擁有相當大的寬高比(aspect ratio)且有別於一般一維的銀金屬線狀結構,此結構擁有更大的表面積,因此應用潛力極大。在製程方面,有別於傳統製備銀線的過程,本實驗並不需要另外添加任何做為前導晶種的成核劑、還原劑或是模板就能在室溫中製備出銀金屬的一維結構。 | zh_TW |
| dc.description.abstract | In this thesis﹐ the the redox properties of poly (3-hexylthiophene) (P3HT) is used to reduce the silver ions to silver metal on the P3HT film﹒On the oher hand﹐because of swelling effect of Tetrahydrofuran(THF) on P3HT can used to reorganize the structure of P3HT simultaneously﹒It make use of the reorganization patterns to control the growth and morphological change of silver metal﹒In addition﹐water and THF are mixed to prepare co-solvent to adjust the surface properties of P3HT film﹐and then we can produce the special silver morphology﹒
In brief﹐the reorganization band structure be produced on the surface of P3HT film after been swollen by THF﹐and then silver ions reduce to silver metal on the band structure﹒In this way﹐it is easy to prepare an elongated silver structure with the range of width form 100 nm to 2 μm﹒The length of the elongated silver structure can up to hundreds μm or more﹒Through TEM diffraction,this silver sturcture is identified as a high degree of the consistency arrangement crystal structure﹒It also shows the major crystal phane of{111}and the major growth direction of <100>﹐and form one-dimensional band structure﹒This long band structure has a quite large aspect ratio and has a larger surface area than that of the general one-dimension silver linear structure﹒Therefore﹐the application potential is enormous﹒Differed from the traditional process in preparing the silver wire, the fabrication process of this experiment can prepare for one-dimensional silver structure at room temperature without adding any nucleating agent as leading seed﹐reducing agent﹐or template﹒ | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:34:18Z (GMT). No. of bitstreams: 1 ntu-102-R00527054-1.pdf: 39908614 bytes, checksum: f34917fa58b47a3ba4097de5356d3878 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………i
中文摘要……………………………………………………………………ii 英文摘要……………………………………………………………………iii 目錄……………………………………………………………………………iv 圖目錄…………………………………………………………………………vi 表目錄…………………………………………………………………………ix 第一章 研究動機……………………………………………………1 第二章 文獻回顧……………………………………………………3 2-1導電高分子…………………………………………………………3 2-1-1導電高分子概論……………………………………………3 2-1-2導電高分子之導電原理………………………………4 2-1-3導電高分子的應用…………………………………………7 2-2導電高分子-聚(3-己基噻吩)合成及簡介……8 2-3聚(3-己基噻吩)與銀之複合材料…………………12 2-3-1銀金屬與其應用……………………………………………12 2-3-2銀金屬一維結構……………………………………………12 2-3-3聚(3-己基噻吩)還原銀離子……………………14 第三章 實驗……………………………………………………………16 3-1實驗藥品………………………………………………………………16 3-2實驗儀器………………………………………………………………18 3-3P3HT分散在水相系統中還原銀金屬及鑑定…21 3-4P3HT薄膜製備……………………………………………………23 3-4-1滴鑄法(Casting)成膜………………………………23 3-5 P3HT的薄膜與硝酸銀反應……………………………25 3-5-1滴鑄成膜的P3HT在THF-Water共溶劑中與硝酸銀的反應……………………25 3-5-2測試P3HT薄膜在THF-Water共溶劑中是否有溶解到液相中………………25 3-5-3 OM in-situ觀察P3HT薄膜在THF-Water共溶劑中膨潤的過程……26 3-5-4 P3HT薄膜浸泡THF-Water共溶劑前後之AFM及XRD鑑定……………………26 3-6銀帶狀結構收集與鑑定……………………………………………………………………………………………28 3-7側向式光學顯微鏡的觀察………………………………………………………………………………………30 第四章 結果與討論…………………………………………………………………………………………31 4-1 P3HT分散在水相以及與硝酸銀反應…………………………………………………31 4-1-1 P3HT分散在水相系統中…………………………………………………………………31 4-1-2加入硝酸銀水溶液反應………………………………………………………………………33 4-2 P3HT薄膜性質…………………………………………………………………………………………36 4-2-1不同方式及溶劑成膜的P3HT薄膜之結構………………………………………36 4-3 利用甲苯滴鑄成的P3HT薄膜與硝酸銀的反應………………………………………41 4-3-1 P3HT薄膜在THF-Water共溶劑之下與硝酸銀的還原反應………………41 4-3-2 THF-Water共溶劑對P3HT薄膜表面結構的影響………………………………58 4-3-3 P3HT薄膜膨潤現象與帶狀結構組成的關係…………………………………………73 4-3-4 In-situ SEM觀察銀金屬帶狀結構的成長…………………………………………86 4-4銀金屬帶狀成長機制與模型……………………………………………………………………………104 第五章 結論………………………………………………………………………………………………………………114 參考文獻………………………………………………………………………………………………………………………115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 一維結構 | zh_TW |
| dc.subject | 奈米銀帶 | zh_TW |
| dc.subject | 共溶劑 | zh_TW |
| dc.subject | 銀 | zh_TW |
| dc.subject | 聚(3-己基?吩) | zh_TW |
| dc.subject | one-dimensional structure | en |
| dc.subject | P3HT | en |
| dc.subject | silver | en |
| dc.subject | co-solvent | en |
| dc.subject | nano-silverbelt | en |
| dc.subject | poly(3-hexylthiophene) | en |
| dc.title | 聚(3-己基噻吩)-銀金屬複合材料之製備與形成機制探討 | zh_TW |
| dc.title | Preparation and Growth Mechanism of Poly(3-hexylthiophene-2,5-diyl)-Silver Composites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林招松(Chao-Sung Lin),童世煌(Shih-Huang Tung),曾勝茂(Sheng-Mao Tseng) | |
| dc.subject.keyword | 聚(3-己基?吩),銀,共溶劑,奈米銀帶,一維結構, | zh_TW |
| dc.subject.keyword | poly(3-hexylthiophene),P3HT,silver,co-solvent,nano-silverbelt,one-dimensional structure, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-11-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 38.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
