Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58788
Title: 植基於雲端運算之多通道腦波癲癇預測系統
Cloud-based Epileptic Seizure Detection System Using a Multi-Channel EEG Classification
Authors: Chia-Ping Shen
沈家平
Advisor: 賴飛羆(Feipei Lai),邱銘章(Ming-Jang Chiu)
Keyword: 腦波,基因演算法,支持向量機,雲端運算,
Electroencephalogram,Genetic Algorithm,Support Vector Machine,Cloud Computing,
Publication Year : 2013
Degree: 博士
Abstract: 癲癇是一種常見的慢性神經疾病,並且會有不定時的發作情形。由於腦波圖 (Electroencephalogram)訊號在癲癇的診斷上扮演重要的角色。因此,雖然多頻道的腦波圖比單頻道的腦波圖有著更多的資訊以及空間解析度,但是傳統的腦波訊號分析卻缺乏多頻道的演算法。基於腦波多頻道的大量資料運算,因此我們在本篇論文提出了一個雲端架構的多頻道腦波之癲癇分析系統 (EAS)。在訊號分析上,我們同時考慮單極點訊號 (Unipolar)和雙極點訊號 (Bipolar)以抽取特徵,其中包含近似熵 (Approximate Entropy)以及訊號統計數值。同時,我們也採用基因演算法 (Genetic Algorithm)做特徵排序,最後再利用支持向量機 (Support Vector Machines)以及後棘波 (Spike)比對濾波器來辨識腦波訊號。實驗結果顯示,臨床資料II的棘波 (Spike)辨識率是86.69%,而發作 (Seizure)的辨識率是99.77%。同時利用臨床資料II所訓練的模型來偵測臨床資料III也可以得到91.18%的棘波 (Spike) 辨識率以及99.22%的發作 (Seizure) 辨識率。因此,我們建立了一個可靠地、及時地以及完整地 (包含醫療資訊以及訊號處理技術)棘波和發作的多頻道腦波偵測系統。
Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked seizures. The Electroencephalogram (EEG) signals play an important role in the diagnosis of epilepsy. In addition, multi-channel EEG signals have much more discrimination information than a single channel. However, traditional recognition algorithms of EEG signals are lack of multi-channel EEG signals. Due to large data computation, we propose a cloud based Epilepsy Analysis System (EAS) on multi-channel EEG signals. Both unipolar and bipolar EEG and ECG signals are both considered in our approach. We make use of approximate entropy (ApEn) and statistic values to extract features cascaded Genetic Algorithm (GA). Furthermore, EEG was also tested the performance by Support Vector Machine (SVM) and post-spike matching filters. We obtained accuracies of spikes and seizures are 86.69% and 99.77% for Clinical Data Set II. The detection system was further validated using the model trained by Clinical Data Set II on Clinical Data Set III. The system again showed high performance, with accuracies of spikes and seizures are 91.18% and 99.22%. Therefore, we built up a reliable, real-time, and complete (medical information and signal processing technology) system for detecting a large variety of seizures and spikes from multi-channel EEG data.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58788
Fulltext Rights: 有償授權
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
5.69 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved