Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58705| Title: | 維騰拉普拉斯算子的密度函數在緊緻流形的漸進行為 Asymptotic Behaviour of The Density Function of Witten Laplacian on Compact Manifolds |
| Authors: | Ching-Hsien Lee 李京憲 |
| Advisor: | 蕭欽玉(Chin-Yu Hsiao) |
| Keyword: | 緊緻流形,量子諧振子,摩斯定理,維騰拉普拉斯算子, compact manifold,quantum harmonic oscillator,Morse theory,Witten Laplacian, |
| Publication Year : | 2020 |
| Degree: | 碩士 |
| Abstract: | 在這篇碩士論文中,我們用維騰形變的方法去計算維騰算子的密度函數並且整理維騰證明摩斯定理的方法。透過密度函數的漸進行為 我們可以更進一步導出維騰拉普拉斯算子特徵空間的維度。密度函數的漸進行為在探討非緊緻流形扮演了一個重要的角色。 In this article, we calculate local density function for Witten Laplacian by using the techniques of Witten's deformation and his proof of Morse inequality. With the help of local density function, we can further derive dimension of the eigenspaces of Witten Laplace operator. The asymptotic behaviour for local density function plays an important role in non-compact case. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58705 |
| DOI: | 10.6342/NTU202001434 |
| Fulltext Rights: | 有償授權 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1007202018204200.pdf Restricted Access | 3.58 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
