Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58675
Title: 基於影片資訊之衣服檢索系統
Video-based Clothing Retrieval
Authors: Shih-Han Wang
王詩涵
Advisor: 歐陽明(Ming Ouhyoung)
Keyword: 前景切割,人體姿勢偵測,基於影像資訊,服裝檢索,
foreground segmentation,human pose estimation,video-based,clothing retrieval,
Publication Year : 2013
Degree: 碩士
Abstract: 在現今社會中, 隨著消費型態的改變, 服裝檢索的需求在許多知名服
裝購物網站正快速提升當中。有別於一般的關鍵字搜尋, 以圖搜尋不僅
能提供更直覺, 更有趣的服裝推薦系統, 甚至有助於身份或職業辨識的
應用。在近期的服裝檢索研究主題, 以圖搜尋也成為主要的研究主題之
一。在本篇論文中, 我們提出另一種新型態的服裝推薦介面- 基於影像
資訊的服裝檢索系統。使用者可以選擇在影片片段中依據喜歡的主角
服裝按下暫停鍵, 系統會自動找出在線上網站的相似款式服裝。
然而, 這個服裝檢索系統仍面臨許多研究問題, 例如人體姿勢偵測, 服裝
檢索系統的即時性等等, 其中我們特別在本篇研究中探討的分別為針對
不準確的人體姿勢偵測作修正以及如何在大量擁有複雜的背景的線上
資料中找出相似的衣服。首先, 我們提出一個結合少量過去影片片段的
人體姿勢偵測機制來修正不準確的姿勢偵測結果; 在有正確姿勢的前提
下, 我們利用圖像切割演算法設計一個全自動的前景切割機制以解決大
量資料中背景多樣性的問題。
我們藉由蒐集數段影片和各種不同的線上購物網站資料來評估我們的
各個機制, 並在最後的實驗結果中, 成功的藉由基於影片資訊改善人體
姿勢的偵測以及利用全自動的前景切割解決複雜背景的問題。
Nowadays, clothing retrieval becomes a thriving demand for online clothing shopping websites. Beyond keyword-based clothing search, image-based clothing retrieval has generated interest in recent research papers. It promotes
more interesting clothing recommendation system and gives the possibility of improving identity or occupation recognition. In this paper, we present a brand-new video-based clothing retrieval system. We believe the system
gives another intuitive clothing recommendation interface in a smart home with such an application scenario: one can select an impressive shot where the character is wearing a fascinating clothing by a TV remote control, and learn the clothing style from the character. However, there still are major challenges in this topic, such as human pose estimation and complex background between online shopping datasets, which often cause inaccurate retrieval results. Our research focuses on two issues here. First, we propose a
human pose estimation mechanism with a video clip of frames for the refinement of inaccurate human pose. Second, we explore an automatic foreground segmentation method with 'Grabcut' algorithm to tackle the complex background problem. In our experiments, we collect a few video clips and different kinds of online shopping datasets. The experimental results successfully demonstrate that our mechanism will improve the inaccurate pose estimation
and can tackle the complex background problem.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58675
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
4.69 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved