請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58364
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂廷璋 | |
dc.contributor.author | Chung-Huang Wang | en |
dc.contributor.author | 王鐘凰 | zh_TW |
dc.date.accessioned | 2021-06-16T08:12:38Z | - |
dc.date.available | 2019-03-09 | |
dc.date.copyright | 2014-03-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-15 | |
dc.identifier.citation | 王伯徹。食藥用菇菌類保健食品產業發展彙編 (上)。食品工業發展研究所:工作報告94-2999, ISBN 986-00-2430-8。新竹,台灣。2005。
王湘伶。以豆科植物為基質生產靈芝發酵液及發酵產物對過敏反應之影響。台灣大學食品科技研究所碩士論文。台北,台灣。2004。 石信德、陳錦桐、陳啟楨。液態菌種於菇類產業之應用。菇類產業發展研討會專刊。37-45。2011。 水野 卓和川合正允 (賴慶亮譯)。菇類的化學,生化學。國立編譯館。台北,台灣。1997。 邱詩婷。建立並評估生物技術平台篩選具抗發炎效果食品。國立台灣大學碩士論文。台北,台灣。2011。 許俐菱。以豆科為基質之靈芝液態培養物之水溶性多醣特徵。台灣大學食品科技研究所碩士論文。台北,台灣。2005。 許維君。常見食用菇類之醣類成分。國立台灣大學碩士論文。台北,台灣。2011。 沈明來。資料分析與SPSS應用。第一版。九州圖書文物有限公司。台北,台灣。2009。 陳宗明。台灣菇類產業發展現況。菇類產業發展研討會專刊。25-31。2011。 陳奕安。利用細胞平台的評估進行中國橄欖萃取物中具抗發炎或抗腫瘤功效成分的分析與分離。國立台灣大學碩士論文。台北,台灣。2012。 黃琬庭。結合酵素-層析法分析可食用菇類中具分支之(1,3;1,6)-beta-D-葡萄聚醣含量。國立台灣大學碩士論文。台北,台灣。2013。 張毅偉。靈芝中具beta-(1-->6)分支之(1-->3)-beta-D-聚葡萄糖的性質與檢測。國立台灣大學博士論文。台北,台灣。2003。 張凱琪。食用菇類多醣之醣組成輪廓與其菇種間的相關性。國立台灣大學碩士論文。台北,台灣。2012。 Adams, D. S.; Pero, S. C.; Petro, J. B.; Nathans, R.; Mackin, W. M.; Wakshull, E., PGG-glucan activates NF-kappa B-like and NF-IL-6-like transcription factor complexes in a murine monocytic cell line. J. Leukoc. Biol. 1997, 62, 865-873. Adams, E. L.; Rice, P. J.; Graves, B.; Ensley, H. E.; Yu, H.; Brown, G. D.; Gordon, S.; Monteiro, M. A.; Papp-Szabo, E.; Lowman, D. W.; Power, T. D.; Wempe, M. F.; Williams, D. L., Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J. Pharmacol. Exp. Ther. 2008, 325, 115-123. Bae, I. Y.; Kim, H. W.; Yoo, H. J.; Kim, E. S.; Lee, S.; Park, D. Y.; Lee, H. G., Correlation of branching structure of mushroom beta-glucan with its physiological activities. Food Res. Int. 2013, 51, 195-200. Bao, X. F.; Liu, C. P.; Fang, J. N.; Li, X. Y., Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr. Res. 2001, 332, 67-74. Bao, X. F.; Wang, X. S.; Dong, Q.; Fang, J. N.; Li, X. Y., Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 2002, 59, 175-181. Battle, J.; Ha, T. Z.; Li, C. F.; Della Beffa, V.; Rice, P.; Kalbfleisch, J.; Browder, W.; Williams, D., Ligand binding to the (1 -> 3)-beta-D-glucan receptor stimulates NF kappa B activation, but not apoptosis in U937 cells. Biochem. Biophys. Res. Commun. 1998, 249, 499-504. Bertaud, F.; Sundberg, A.; Holmbom, B., Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr. Polym. 2002, 48, 319-324. Beutler, B.; Rietschel, E. T., Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 2003, 3, 169-176. Boh, B.; Berovic, M.; Zhang, J.; Lin, Z.-B., Ganoderma lucidum and its pharmaceutically active compounds. In Biotechnol. Ann. Rev., ElGewely, M. R., Ed. Elsevier Amsterdam, Netherlands, 2007; Vol. 13, pp 265-301. Bohn, J. A.; BeMiller, J. N., (1,3)-beta-D-glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydr. Polym. 1995, 28, 3-14. Bowman, S. M.; Free, S. J., The structure and synthesis of the fungal cell wall. Bioessays 2006, 28, 799-808. Brown, G. D.; Gordon, S., Fungal beta-glucans and mammalian immunity. Immunity 2003, 19, 311-315. Brown, G. D.; Gordon, S., Immune recognition of fungal beta-glucans. Cell. Microbiol. 2005, 7, 471-479. Cardoso, P. G.; Macedo, G. C.; Azevedo, V.; Oliveira, S. C., Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microbial cell factories 2006, 5, 13. Chang, H. H.; Hsieh, K. Y.; Yeh, C. H.; Tu, Y. P.; Sheu, F., Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. Int. Immunopharmacol. 2010, 10, 239-246. Chang, Y. W.; Lu, T. J., Molecular characterization of polysaccharides in hot-water extracts of Ganoderma lucidum fruiting bodies. J. Food Drug Anal. 2004, 12, 59-67. Chen, H. S.; Tsai, Y. F.; Lin, S.; Lin, C. C.; Khoo, K. H.; Lin, C. H.; Wong, C. H., Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorganic & Medicinal Chemistry 2004, 12, 5595-5601. Chen, J. H.; Zhang, L. N.; Nakamura, Y.; Norisuye, T., Viscosity behavior and chain conformation of a (1 -> 3)-alpha-glucan from Ganoderma lucidum. Polym. Bull. 1998, 41, 471-478. Chen, J. Z.; Seviour, R., Medicinal importance of fungal beta-(1 -> 3), (1 -> 6)-glucans. Mycol. Res. 2007, 111, 635-652. Cheung, P. C. K., Dietary fiber content and composition of some cultivated edible mushroom fruiting bodies and mycelia. J. Agric. Food Chem. 1996, 44, 468-471. Cheung, P. C. K., Dietary fibre content and composition of some edible fungi determined by two methods of analysis. J. Sci. Food Agric. 1997, 73, 255-260. Collins, T.; Read, M.; Neish, A.; Whitley, M.; Thanos, D.; Maniatis, T., Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. The FASEB Journal 1995, 9, 899-909. Czop, J. K., The role of beta-glucan receptors on blood and tissue leukocytes in phagocytosis and metabolic-activation. Pathol. Immunopathol. Res. 1986, 5, 286-296. Danielson, M. E.; Dauth, R.; Elmasry, N. A.; Langeslay, R. R.; Magee, A. S.; Will, P. M., Enzymatic method to measure β-1,3-β-1,6-glucan content in extracts and formulated products (GEM assay). J. Agric. Food Chem. 2010, 58, 10305-10308. Deruiter, G. A.; Schols, H. A.; Voragen, A. G. J.; Rombouts, F. M., Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with tfa hydrolysis is superior to four other methods. Analytical Biochemistry 1992, 207, 176-185. Dikeman, C. L.; Bauer, L. L.; Flickinger, E. A.; Fahey, G. C., Effects of stage of maturity and cooking on the chemical composition of select mushroom varieties. J. Agric. Food Chem. 2005, 53, 1130-1138. Ding, Z.; Wang, Q.; Peng, L.; Zhang, L.; Gu, Z.; Shi, G.; Zhang, K., Relationship between mycelium morphology and extracellular polysaccharide production of medicinal mushroom Ganoderma lucidum in submerged culture. Journal of Medicinal Plants Research 2012, 6, 2868-2874. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F., Colorimetric method for determination of sugars and related substances Anal. Chem. 1956, 28, 350-356. Dupont, A. L., Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 2003, 44, 4117-4126. Evans, N. A.; Hoyne, P. A.; Stone, B. A., Characteristics and specificity of the interaction of a fluorochrome from aniline blue (sirofluor) with polysaccharides Carbohydr. Polym. 1984, 4, 215-230. Fadok, V. A.; Bratton, D. L.; Rose, D. M.; Pearson, A.; Ezekewitz, R. A. B.; Henson, P. M., A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000, 405, 85-90. Falch, B. H.; Espevik, T.; Ryan, L.; Stokke, B. T., The cytokine stimulating activity of (1 -> 3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr. Res. 2000, 329, 587-596. Falch, B. H.; Stokke, B. T., Structural stability of (1,3)-β-D-glucan macrocycles. Carbohydr. Polym. 2001, 44, 113-121. Fang, Q. H.; Tang, Y. J.; Zhong, J. J., Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem. 2002, 37, 1375-1379. Fang, Q. H.; Zhong, J. J., Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 2002a, 37, 769-774. Fang, Q. H.; Zhong, J. J., Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem. Eng. J. 2002b, 10, 61-65. Fazenda, M. L.; Seviour, R.; McNeil, B.; Harvey, L. M., Submerged culture fermentation of 'higher fungi': The macrofungi. In Adv. Appl. Microbiol., Laskin, A. L.; Sariaslani, S., Eds. Elsevier Academic Press Inc: San Diego, CA, 2008; Vol. 63, pp 33-103. Godfrey, C.; Wing, C.; Daniel, S., The effects of β-glucan on human immune and cancer cells. Journal of Hematology & Oncology 2009, 2, 25. Goodridge, H. S.; Reyes, C. N.; Becker, C. A.; Katsumoto, T. R.; Ma, J.; Wolf, A. J.; Bose, N.; Chan, A. S. H.; Magee, A. S.; Danielson, M. E.; Weiss, A.; Vasilakos, J. P.; Underhill, D. M., Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 2011, 472, 471-475. Griffith, T. S.; Wiley, S. R.; Kubin, M. Z.; Sedger, L. M.; Maliszewski, C. R.; Fanger, N. A., Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J. Exp. Med. 1999, 189, 1343-1353. Hsieh, C.; Tseng, M. H.; Liu, C. J., Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme Microb. Technol. 2006, 38, 109-117. Janeway, C. A., The immune-system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 1992, 13, 11-16. Kapteyn, J. C.; Van Den Ende, H.; Klis, F. M., The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys. Acta-Gen. Subj. 1999, 1426, 373-383. Kiener, P. A.; Davis, P. M.; Rankin, B. M.; Klebanoff, S. J.; Ledbetter, J. A.; Starling, G. C.; Liles, W. C., Human monocytic cells contain high levels of intracellular Fas ligand - Rapid release following cellular activation. J. Immunol. 1997, 159, 1594-1598. Kiho, T.; Yoshida, I.; Nagai, K.; Ukai, S.; Hara, C., Polysaccharides in fungi .13. (1- 3)-alpha-D-glucan from an alkaline extract of agrocybe-cylindracea, and antitumor-activity of its o-(carboxymethyl)ated derivatives. Carbohydrate Research 1989, 189, 273-279. Kim, H. M.; Park, M. K.; Yun, J. W., Culture pH affects exopolysaccharide production in submerged mycelial culture of Ganoderma lucidum. Appl. Biochem. Biotechnol. 2006, 134, 249-262. Klis, F. M., Cell-wall assembly in yeast. Yeast 1994, 10, 851-869. Klis, F. M.; Mol, P.; Hellingwerf, K.; Brul, S., Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239-256. Ko, Y. T.; Lin, Y. L., 1,3-beta-Glucan quantification by a fluorescence microassay and analysis of its distribution in foods. J. Agric. Food Chem. 2004, 52, 3313-3318. Kuo, M. C.; Weng, C. Y.; Ha, C. L.; Wu, M. J., Ganoderma lucidum mycelia enhance innate immunity by activating NF-kappa B. J. Ethnopharmacol. 2006, 103, 217-222. Leung, M. Y. K.; Liu, C.; Koon, J. C. M.; Fung, K. P., Polysaccharide biological response modifiers. Immunol. Lett. 2006, 105, 101-114. Lowe, E.; Rice, P.; Ha, T. Z.; Li, C. F.; Kelley, J.; Ensley, H.; Lopez-Perez, J.; Kalbfleisch, J.; Lowman, D.; Margl, P.; Browder, W.; Williams, D., A (1,3)-beta-D-linked heptasaccharide is the unit ligand for glucan pattern recognition receptors on human monocytes. Microb. Infect. 2001, 3, 789-797. Lu, Y. C.; Yeh, W. C.; Ohashi, P. S., LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145-151. Ma, Q.; Kinneer, K., Chemoprotection by Phenolic Antioxidants: Inhibition of tumor necrosis factor α induction in macrophages. J. Biol. Chem. 2002, 277, 2477-2484. Mackay, R. J.; Russell, S. W., Protein-changes associated with stages of activation of mouse macrophages for tumor-cell killing. J. Immunol. 1986, 137, 1392-1398. Mantovani, M. S.; Bellini, M. F.; Angeli, J. P. F.; Oliveira, R. J.; Silva, A. F.; Ribeiro, L. R., beta-glucans in promoting health: Prevention against mutation and cancer. Mutat. Res. - Rev. Mut. Res. 2008, 658, 154-161. Manzi, P.; Aguzzi, A.; Pizzoferrato, L., Nutritional value of mushrooms widely consumed in Italy. Food Chem. 2001, 73, 321-325. Manzi, P.; Marconi, S.; Aguzzi, A.; Pizzoferrato, L., Commercial mushrooms: nutritional quality and effect of cooking. Food Chem. 2004, 84, 201-206. McCormick, C. L.; Callais, P. A.; Hutchinson, B. H., Solution studies of cellulose in lithium-chloride and N,N-dimethylacetamide. Macromolecules 1985, 18, 2394-2401. Miyazaki, T.; Nishijima, M., Studies on Fungal Polysaccharides. XXVII. Structural Examination of a Water-soluble, Antitumor Polysaccharide of Ganoderma lucidum. Chem. Pharm. Bull 1981, 29, 3611-3616. Miyazaki, T.; Nishijima, M., Structural examination of an alkali-extracted, water-soluble heteroglycan of the fungus Ganoderma lucidum. Carbohydr. Res. 1982, 109, 290-294. Mizuno, M.; Minato, K.; Ito, H.; Kawade, M.; Terai, H.; Tsuchida, H., Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem. Mol. Biol. Int. 1999, 47, 707-714. Mizuno, M.; Minato, K.; Kawakami, S.; Tatsuoka, S.; Denpo, Y.; Tsuchida, H., Contents of anti-tumor polysaccharides in certain mushrooms and their immunomodulating activities. Food Science and Technology Research 2001, 7, 31-34. Mizuno, T., The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (reivew). Int. J. Med. Mushrooms 1999, 1, 9-29. Mueller, A.; Raptis, J.; Rice, P. J.; Kalbfleisch, J. H.; Stout, R. D.; Ensley, H. E.; Browder, W.; Williams, D. L., The influence of glucan polymer structure and solution conformation on binding to (1 -> 3)-beta-D-glucan receptors in a human monocyte-like cell line. Glycobiology 2000, 10, 339-346. Murakami, A.; Ohigashi, H., Targeting NOX, INOS and COX‐2 in inflammatory cells: Chemoprevention using food phytochemicals. Int. J. Cancer 2007, 121, 2357-2363. Nakagawa, Y.; Ohno, N.; Murai, T., Suppression by Candida albicans beta-glucan of cytokine release from activated human monocytes and from T cells in the presence of monocytes. J. Infect. Dis. 2003, 187, 710-713. Nitschke, J.; Modick, H.; Busch, E.; von Rekowski, R. W.; Altenbach, H. J.; Molleken, H., A new colorimetric method to quantify beta-1,3-1,6-glucans in comparison with total beta-1,3-glucans in edible mushrooms. Food Chem. 2011, 127, 791-796. Ohno, N.; Hashimoto, T.; Adachi, Y.; Yadomae, T., Corrigendum to:“Conformation dependency of nitric oxide synthesis of murine peritoneal macrophages by β-glucans in vitro”[Immunol. Lett. 52 (1996) 1–7]. Immunol. Lett. 1996, 53, 157-163. Ooi, V. E. C.; Liu, F., Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 2000, 7, 715-729. Osherov, N. Y., O., The cell wall of filamentous fungi. In Cellular and molecular biology of filamentous fungi, Borkovich, K. A.; Ebbole, D. J., Eds. ASM Press: Washington, DC, 2010; pp 224-237. Papinutti, L., Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex. Bioresour. Technol. 2010, 101, 1941-1946. Peng, Y. F.; Zhang, L.; Zhang, Y. Y.; Xu, X. J.; Kennedy, J. F., Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae. Carbohydr. Polym. 2005a, 59, 351-356. Peng, Y. F.; Zhang, L. N.; Zeng, F. B.; Kennedy, J. F., Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydr. Polym. 2005b, 59, 385-392. Posadas, I.; Terencio, M. C.; Guillen, I.; Ferrandiz, M. L.; Coloma, J.; Paya, M.; Alcaraz, M. J., Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn-Schmiedeberg's Arch. Pharmacol. 2000, 361, 98-106. Rai, R. D.; Kamal, S.; Singh, S. K., Effect of wheat bran supplementation to the sawdust substrate on mycelial growth rate and production of extracellular degradative enzymes by the medicinal Reishi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae). Int. J. Med. Mushrooms 2004, 6, 375-382. Rao, K. M. K., Molecular mechanisms regulating iNOS expression in various cell types. Journal of Toxicology and Environmental Health Part B: Critical Reviews 2000, 3, 27-58. Ren, L.; Reynisson, J.; Perera, C.; Hemar, Y., The physicochemical properties of a new class of anticancer fungal polysaccharides: A comparative study. Carbohydr. Polym. 2013. Salveoni, D.; Seibert K.; Marino, M. H. New concepts in inflammation and therapy. Drug News Perspect 1996, 9, 204-219 Sanmee, R.; Dell, B.; Lumyong, P.; Izumori, K.; Lumyong, S., Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chem. 2003, 82, 527-532. Schepetkin, I. A.; Quinn, M. T., Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 2006, 6, 317-333. Sletmoen, M.; Stokke, B. T., Review : Higher order structure of (1,3)-beta-D-glucans and its influence on their biological activities and complexation abilities. Biopolymers 2008, 89, 310-321. Smith, C. A.; Davis, T.; Anderson, D.; Solam, L.; Beckmann, M. P.; Jerzy, R.; Dower, S. K.; Cosman, D.; Goodwin, R. G., A receptor for tumor-necrosis-factor defines an unusual family of cellular and viral-proteins. Science 1990, 248, 1019-1023. Smith, J. E.; Rowan, N. J.; Sullivan, R., Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol. Lett. 2002, 24, 1839-1845. Sone, Y.; Misaki, A., Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of ganoderma-lucidum Agricultural and Biological Chemistry 1985, 49, 2641-2653. Sone, Y.; Okuda, R.; Wada, N.; Kishida, E.; Misaki, A., Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem. 1985, 49, 2641-2653. Sonnenberg, A. S. M.; Sietsma, J. H.; Wessels, J. G. H., Spatial and temporal differences in the synthesis of (1,3)-beta and (1,6)-beta linkages in a wall glucan of Schizophyllum-commune. Exp. Mycol. 1985, 9, 141-148. Surh, Y.-J.; Chun, K.-S.; Cha, H.-H.; Han, S. S.; Keum, Y.-S.; Park, K.-K.; Lee, S. S., Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2001, 480, 243-268. Synytsya, A.; Mickova, K.; Jablonsky, I.; Slukova, M.; Copikova, J., Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements. Czech. J. Food Sci. 2008, 26, 441-446. Synytsya, A.; Novak, M., Structural diversity of fungal glucans. Carbohydr. Polym. 2013, 92, 792-809. Talaga, P.; Vialle, S.; Moreau, M., Development of a high-performance anion-exchange chromatography with pulsed-amperometric detection based quantification assay for pneumococcal polysaccharides and conjugates. Vaccine 2002, 20, 2474-2484. Tang, Y. J.; Zhong, J. J., Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb. Technol. 2002, 31, 20-28. Tang, Y. J.; Zhang, W.; Liu, R. S.; Zhu, L. W.; Zhong, J. J., Scale-up study on the fed-batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochem. 2011, 46, 404-408. Vane, J. R.; Mitchell, J. A.; Appleton, I.; Tomlinson, A.; Bishop-Bailey, D.; Croxtall, J.; Willoughby, D. A., Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proceedings of the National Academy of Sciences 1994, 91, 2046-2050. Volman, J. J.; Ramakers, J. D.; Plat, J., Dietary modulation of immune function by beta-glucans. Physiol. Behav. 2008, 94, 276-284. Vos, A. P.; M'Rabet, L.; Stahl, B.; Boehm, G.; Garssen, J., Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit. Rev. Immunol. 2007, 27, 97-140. Wagner, R.; Mitchell, D. A.; Sassaki, G. L.; Amazonas, M.; Berovic, M., Current techniques for the cultivation of Ganoderma lucidum for the production of biomass, ganoderic acid and polysaccharides. Food Technol. Biotechnol. 2003, 41, 371-382. Wagner, R.; Mitchell, D. A.; Sassaki, G. L.; Amazonas, M., Links between morphology and physiology of Ganoderma lucidum in submerged culture for the production of exopolysaccharide. J. Biotechnol. 2004, 114, 153-164. Wasser, S. P., Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258-274. Wessels, J. G. H.; Regensbu.Ba; Marchant, R.; Kreger, D. R.; Devries, O. M. H., Chemical and morphological characterization of hyphal wall surface of basidiomycete schizophyllum-commune Biochimica Et Biophysica Acta 1972, 273, 346-&. Wessels, J. G. H., Wall growth, protein excretion and morphogenesis in fungi. New Phytol. 1993, 123, 397-413. Williams, D. L.; Mueller, A.; Browder, W., Glucan-based macrophage stimulators - A review of their anti-infective potential. Clin. Immunother. 1996, 5, 392-399. Wood, P. J.; Fulcher, R. G., Dye interactions - a basis for specific detection and histochemistry of polysaccharides. J. Histochem. Cytochem. 1983, 31, 823-826. Wood, P. J.; Fulcher, R. G., Specific interaction of aniline blue with (1,3)-β-D-glucan. Carbohydr. Polym. 1984, 4, 49-72. Xie, Q.; Kashiwabara, Y.; Nathan, C., Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 1994, 269, 4705-4708. Yang, H. L.; Zhang, L., Changes in some components of soymilk during fermentation with the basidiomycete Ganoderma lucidum. Food Chem. 2009, 112, 1-5. Young, S. H.; Jacobs, R. R., Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue. Carbohydr. Res. 1998, 310, 91-99. Zhong, J. J.; Tang, Y. J., Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. In Biomanufacturing, Zhong, J. J., Ed. Springer-Verlag Berlin: Berlin, 2004; Vol. 87, pp 25-59. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58364 | - |
dc.description.abstract | 真菌的細胞壁組成中具(1,6)-β-D-葡萄糖基分支之(1,3)-β-D-葡萄聚醣為一可做為生物反應修飾劑(biological response modifiers)的活性多醣,本研究利用可專一性檢測的酵素水解 [endo-與exo-(1,3)-β-D-glucanase] 結合陰離子交換層析方法量化台灣常見食用菇及靈芝菌絲發酵產物內該種葡萄聚醣的含量及分支度特性。利用0.5 M NaOH鹼液可提高(1,3;1,6)-β-D-葡萄聚醣的萃出量,為熱水萃取的4.4 – 16.4倍,除木質化程度較高的靈芝以外,不同萃取方式所得的食用菇可溶性(1,3;1,6)-β-D-葡萄聚醣其分支度並無明顯差異。靈芝子實體含有不同分支比例的β-D-葡萄聚醣,熱水萃取可得到較高分支比例的部份 (分支度0.24),鹼液萃取因使低分支比例的葡萄聚醣溶出,使平均分支比例降低至0.13。而食用菇蕈子實體內非水溶(1,3;1,6)-β-D-葡萄聚醣含量為每克菇體乾重5.11 – 202.50 mg,水溶性(1,3;1,6)-β-D-葡萄聚醣含量則為每克菇體乾重0.18 – 15.36 mg,以白木耳最低,杏鮑菇最高。由食用菇蕈水溶非消化多醣刺激含有報導基因轉殖質體的老鼠巨噬細胞株RAW 264.7,檢測報導基因 (luciferase) 的活性表現及腫瘤壞死因子 (tumor necrosis factor-alpha, TNF-alpha)、一氧化氮 (nitric oxide, NO) 的釋放量,發現黑木耳、巴西洋菇、白木耳及珊瑚菇有高度的免疫刺激效果,顯示食用菇蕈多醣中具免疫刺激活性者並非只有(1,3;1,6)-β-D-葡萄聚醣。另外,也證實報導基因luciferase活性增加所代表誘導型一氧化氮合成酶 (inducible nitric oxide synthase, iNOS) 和誘導型環氧化酶 (cyclooxygenase-2, COX-2) 基因promoter的活化,與TNF-alpha釋放量有高度正向相關,顯示以此平台取代TNF-alpha檢測的可行性,以及做為一高通量篩檢食材成分免疫刺激效果之快速平台的可應用性。
靈芝為一重要食藥兩用之菇蕈,在現代生技工業中常用液態發酵方式培養菌絲體以獲得高量的多醣,因此選用Ganoderma lucidum BCRC36123菌株12個批次培養的菌絲發酵產品,研究此類產品中多醣產量與(1,3;1,6)-β-D-葡萄聚醣含量的變異。結果顯示發酵液中可溶性(1,3;1,6)-β-D-葡萄聚醣之濃度有大輻的變動,變異範圍在1.3 – 79.9 mg/dL,但在有顯著產量的條件下,該多醣的分支度及分子量輪廓相似,分別介於0.21 – 0.36及10^5 – 10^6 g/mol,並利用(1,3;1,6)-β-D-葡萄聚醣易互相絮集的特性,成功地以35%乙醇劃分沈降的方式將其自原多醣樣品中分離純化出,也藉由刺激老鼠巨噬細胞株RAW 264.7釋放TNF-alpha的活性證實,該多醣為一適切的活性指標。 | zh_TW |
dc.description.abstract | The bioactive polysaccharides, (1,3)-β-D-glucans with (1,6)-β-D-glucosyl branches, are components of structural polysaccharides of fungal cell walls and have been classified as biological response modifiers (BRM). In this study, we used enzymatic-high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method to determine the amount and degree of branching (DB) of (1,3;1,6)-β-D-glucans in samples including the fruity bodies of edible mushrooms cultivated in Taiwan and the mycelium products of Ganoderma lucidum by submerged cultifation. Alkaline solution (0.5 M NaOH) extraction could increased the yield of (1,3;1,6)-β-D-glucans to 4.4 – 16.4 folds compared with the one from hot water extraction. Except the fruiting body of Ganoderma lucidum, which exhibits ligniform, the DB of edible mushrooms reveal no difference by various extraction methods. The (1,3)-β-D-glucans of G. lucidum comprised of water-soluble branching (DB 0.24) component and essential linear component that occurred in the alkaline solution extraction. Moreover, the content of insoluble dietary fiber (IDF)-(1,3;1,6)-β-D-glucans contents were 5.11 – 202.50 mg/g (dry basis), and soluble dietary fiber (SDF)-(1,3;1,6)-β-D-glucans were 0.18 – 15.36 mg/g (dry basis). The results indicated that the majority of (1,3;1,6)-β-D-glucans occurred in the insoluble dietary fiber of mushroom. We also investigated bioactivity of non-digestible polysaccharides (ND-PS) from various mushroom species by two reporter cell platforms (RAW 264.7 containing constructed plasmid, iNOS promoter-luciferase or COX-2 promoter-luciferase), and the TNF-alpha and NO concentrations in medium were determined as well. The results indicated that the immune-stimulation activities of (1,3;1,6)-β-D-glucans are mild, and some other bioactive polysaccharides may also contribute to the immune modulation activity. Moreover, we confirmed the strong positive correlations between iNOS or COX-2-directed luciferase reporter platform and the ELISA-based assay for medium TNF-alpha through this data set. This suggested that the promoter-luciferase assays successfully reflect the TNF-alpha concentration levels and the platform is applicable as a high throughput screening for the detection of mushroom polysaccharides with immune-modulatory activities.
We further analyzed twelve cultivation products of Ganoderma lucidum mycelium samples. Although the results display that the amount of (1,3;1,6)-β-D-glucans significantly varied in different fermentation conditions, the DB and molecular weight of (1,3;1,6)-β-D-glucans restrict to a narrow range. For the high aggregating tendency of (1,3;1,6)-β-D-glucans, we successfully purified (1,3;1,6)-β-D-glucans by 35% ethanol precipitation method. We further confirmed the purity of (1,3;1,6)-β-D-glucans and demonstrated its bioactivity by TNF-alpha releasing assay in RAW 264.7 cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:12:38Z (GMT). No. of bitstreams: 1 ntu-103-D97641002-1.pdf: 4120977 bytes, checksum: 3a4463d51ef6147e0eac392c0069c172 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 摘要 I
Abstract III 目錄 V 圖目錄 IX 表目錄 XI 附表附圖目錄 XII 壹、前言 1 貳、文獻回顧 3 一、食用菇蕈簡介 3 (一)生物分類 3 (二)營養價值 3 (三)食用菇蕈之活性多醣及其生理功效 5 二、靈芝簡介 6 (一)靈芝之活性多醣及其生理功效 7 (二)靈芝菌絲液態發酵於生產靈芝多醣的相關研究 8 三、(1,3)-β-D-葡萄聚醣簡介 10 (一)生物來源及基本結構 10 (二)(1,3)-β-D-葡萄聚醣與真菌細胞壁的關係 11 (三)環境條件對(1,3)-β-D-葡萄聚醣高級結構的影響 13 (四)真菌(1,3;1,6)-β-D-葡萄聚醣之生物活性及分子結構對活性表現的影響 15 四、(1,3)-β-D-葡萄聚醣定量檢測方法 18 (一)酵素水解結合呈色法或層析法 18 1 endo-與exo-(1,3)-β-D-Glucanase 19 2 Lyticase與β-glucosidase, exo-1,3-β-glucanase 20 3 exo-1,3-β-Glucanase, β-glucosidase與amyloglucosidase, invertase 23 (二)染劑錯合呈色法 23 1 Aniline blue 螢光測定法 23 2 Congo red 可見光測定法 25 (三)抗體識別結合酵素聯結免疫分析法 25 五、巨噬細胞與其免疫刺激反應 26 (一)巨噬細胞及其功能 26 (二)脂多醣誘導巨噬細胞產生之免疫刺激 27 (三)免疫刺激評估指標 29 1 iNOS與NO 29 2 COX-2 29 3 Tumor necrosis factor-alpha (TNF-alpha) 29 參、研究目的與實驗架構 31 一、研究目的 31 二、實驗架構 32 肆、材料與方法 33 一、實驗材料及其製備 33 (一)食用菇蕈子實體及其凍乾粉末製備 33 (二)食用菇蕈水溶性膳食纖維 (熱水可萃多醣) 製備 33 (三)食用菇蕈鹼可萃多醣製備 37 (四)靈芝菌絲液態培養發酵產物 37 (五)靈芝菌絲液態發酵產物水溶性多醣的製備及區分 38 (六)具報導基因細胞殖株平台 40 二、化學藥品 41 (一)化學試劑 41 (二)標準品 41 (三)酵素 42 三、儀器設備 42 四、實驗方法 43 (一)粗多醣含量 43 (二)(1,3;1,6)-β-D-葡萄聚醣含量及其(1,6)-β-D-glucosyl分支比例 43 (三)β-D-葡萄聚醣含量-Megazyme分析套組 47 1 Mushroom and yeast beta-glucan assay 47 2 Enzymatic yeast beta-glucan 49 (四)單醣組成 50 (五)分子量分佈 51 (六)巨噬細胞免疫刺激活性檢測 52 伍、結果與討論 55 一、不同酵素水解法測定菇蕈子實體樣品中葡萄聚醣的比較 55 二、不同萃取溶液對菇蕈子實體中(1.3;1,6)-β-D-葡萄聚醣可萃出量及其分支比例的影響 64 (一)鹼萃條件的評估 64 (二)不同萃取方式所得(1,3;1,6)-β-D-葡萄聚醣可萃出量的比較 65 (三)不同萃取方式所得(1,3;1,6)-β-D-葡萄聚醣分支度的比較 67 三、菇蕈子實體中水溶性及非水溶性膳食纖維之(1,3;1,6)-β-D-葡萄聚醣的分佈 68 四、利用食用菇蕈水溶非消化性多醣 (水溶性膳食纖維) 評估具報導基因細胞殖株平台的應用 72 (一)報導基因細胞殖株平台 (iNOS-及COX-2-directed luciferase) 適用性確認 72 (二)具報導基因細胞殖株平台篩檢菇蕈水溶非消化性多醣的活性表現 73 (三)菇蕈水溶非消化性多醣對刺激老鼠巨噬細胞分泌TNF-alpha及NO的釋放量 78 (四)報導基因細胞殖株平台與其他檢測免疫調節活性之測定方法結果的比較 79 五、靈芝菌絲發酵產物中可溶性(1,3;1,6)-β-D-葡萄聚醣的含量濃度及分子結構特性 82 (一)可溶性(1,3;1,6)-β-D-葡萄聚醣濃度的變異性 82 (二)可溶性多醣中(1,3;1,6)-β-D-葡萄聚醣所占比例及其單醣組成 85 (三)可溶性(1,3;1,6)-β-D-葡萄聚醣的分子特徵 88 (四)可溶性(1,3;1,6)-β-D-葡萄聚醣的分離純化及其免疫活性的確認 92 陸、結論 95 柒、參考文獻 97 | |
dc.language.iso | zh-TW | |
dc.title | "菇蕈中活性多醣(1,3;1,6)-β-D-葡萄聚醣的分析與功能評估" | zh_TW |
dc.title | The analysis and function evaluation of bioactive polysaccharide (1,3;1,6)-β-D-glucans in mushrooms | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 謝淑貞 | |
dc.contributor.oralexamcommittee | 許輔,張永和,王培銘 | |
dc.subject.keyword | (1,3,1,6)-β-D-葡萄聚醣,分支度,可食用菇,靈芝,RAW 264.7,iNOS,COX-2,酵素水解,螢光酵素分析, | zh_TW |
dc.subject.keyword | (1,3,1,6)-β-D-glucan,degree of branching,edible mushroom,Ganoderma lucidum,iNOS,COX-2,enzymatic hydrolysis,luciferase assay, | en |
dc.relation.page | 118 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-02-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。