Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58295| Title: | 穩態波茲曼方程在擴散反射邊界條件下解的存在性 Existence of Solution for Stationary Boltzmann Equation with Diffuse Reflection Boundary Condition |
| Authors: | Yuan-Chieh Chen 陳遠介 |
| Advisor: | 陳逸昆(I-Kun Chen) |
| Keyword: | 波茲曼方程,擴散反射邊界條件,非恆溫邊界,穩態問題,線性化波茲曼方程, Boltzmann Equation,Diffuse Reflection Boundary Condition,Non-isothermal Boundary,Steady Problem,Linearized Boltzmann Equation, |
| Publication Year : | 2020 |
| Degree: | 碩士 |
| Abstract: | 波茲曼方程式在研究熱傳導與稀薄氣體的領域中有著重要的地位。本文探討 穩態波茲曼方程式在擴散反射邊界條件下解的存在性,並討論當邊界溫度不為定 值的情形。我們給出一個直接的方法去估計線性化波茲曼算子的核空間,並藉由 此證明了L 2 空間的解存在性與估計。我們也推廣了傳統的特徵線方法,討論了與 邊界多次碰撞的情形,並證明了L ∞ 空間的解存在性與估計。最後,我們證明了 當邊界的溫度與均衡溫度差距小的情形下,穩態波茲曼方程式在邊界非常溫的擴 散反射邊界條件下解的存在性。 In this thesis, we consider the steady Boltzmann equation with diffuse reflection boundary condition. We study the case of hard potential and the non-isothermal boundary. We prove the existence and the uniqueness of solution and their estimate in both L 2 and L ∞ space. In L 2 the Theorem, we provide a direct way to estimate the kernel of the linearized Boltzmann operator. In the L ∞ Theorem, we introduce the stochastic cycles and prove the estimate that is valid for both steady and dynamic cases. And we provide a iteration scheme for the non-isothermal boundary temperature to prove the existence result and the L ∞ estimate when the wall temperature do not oscillate too much. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58295 |
| DOI: | 10.6342/NTU202001493 |
| Fulltext Rights: | 有償授權 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1407202002121500.pdf Restricted Access | 1.75 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
