Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58161
Title: 矩陣束之幾何結構
On Geometric Structure of Matrix Pencils
Authors: Guan-Yu Chen
陳冠羽
Advisor: 容志輝(Chee-Fai Yung)
Keyword: 非正規矩陣束,Wong氏序列,Kronecker典型形式,奇異描述子系統,差分代數方程組 (DAEs),商空間幾何方法,
non-regular matrix pencil,Wong's sequences,Kronecker canonical form,singular descriptor systems,difference algebraic equations (DAEs),geometric approach using quotient space,
Publication Year : 2020
Degree: 碩士
Abstract: 本論文研究非正規矩陣束$(E,A)$的幾何結構以及相應的自治離散時間描述子系統$Ex_{i+1}=Ax_i$。我們展示了Wong氏序列 [Wong, 1974] 的維度結構與Kronecker典型形式之間的聯繫。我們證明了狀態空間可以分解為奇異子空間、非平凡譜子空間和multishift子空間的直和。我們進一步根據相應的商空間結構找到各個子空間的Kronecker基底。此外,我們證明了各個子空間的Kronecker基底恰由奇異鏈、Jordan鏈和multishift鏈構成。這為非正規矩陣束的Kronecker典型形式提供了一種新的幾何證明方法,並且提供更多的幾何直觀。最後,離散時間描述子系統$Ex_{i+1}=Ax_i$的解行為將被完整刻劃。我們也給出數值範例用於說明。
Geometric structure of non-regular matrix pencils $(E,A)$ and the corresponding autonomous discrete-time descriptor systems $Ex_{i+1}=Ax_i$ are studied. We show the connection between the dimension structure of Wong's sequences [Wong, 1974] and the Kronecker canonical form. We also show that the state space can be decomposed as the sum of singularity subspace, nontrivial spectral subspace and the multishift subspace. We further find the Kronecker basis for each subspace in terms of pertinent quotient spaces. Moreover, we prove that the Kronecker basis for each subspace consists of singular chains, Jordan chains and the multishift chains. This provides a new geometric approach to the Kronecker canonical form of a non-regular matrix pencil, and gives more geometric insight. Finally, the solution behavior of the discrete-time descriptor systems $Ex_{i+1}=Ax_i$ is given. Some numerical examples are given for illustration.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58161
DOI: 10.6342/NTU202001519
Fulltext Rights: 有償授權
Appears in Collections:應用數學科學研究所

Files in This Item:
File SizeFormat 
U0001-1407202021090800.pdf
  Restricted Access
1.22 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved