請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57682
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉安義 | |
dc.contributor.author | Pei-Chun Jen | en |
dc.contributor.author | 任珮君 | zh_TW |
dc.date.accessioned | 2021-06-16T06:57:46Z | - |
dc.date.available | 2019-07-29 | |
dc.date.copyright | 2014-07-29 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-18 | |
dc.identifier.citation | 中國金華衛生監督所。配方無鋁添加劑油條及製作方法。2010。CN 101756100。
呂秀英。2011。正確使用統計圖表呈現處理間比較。台灣農業研究。台灣,台北。 周作人。1935。談油炸鬼。河北教育出版社。中國。 許家齊。2012。降低黑糖中丙烯醯胺之方法。國立臺灣大學食品科技研究所碩士學位論文。台灣,台北。 葉安義、陳時欣、康宏毅、許家齊。2012。食品加工衍生物質衛安全風險研究。行政院衛生署食品藥物管理局。台灣,台北。DOH101-FDA-31602。 鄭維智。2009。台灣地區點心食品丙烯醯胺含量及其風險評估暨擬似食品模擬系統中丙烯醯胺之形成與消失。國立臺灣大學食品科技研究所博士學位論文。 蕭欣宜、吳帛儒、許朝凱、鄭維智、馮潤蘭、蔡淑貞。2011。九十九年餐飲業油炸油稽查抽驗。台灣,台北。 蘇明德。2007。油條裡的化學。科學發展,410期: 70-73。台灣,台北。 行政院勞工委員會勞工安全衛生研究所。2009。丙烯醯胺暴露勞工生物指標之研究。台灣,台北。 行政院衛生署食品藥物管理署。2012。食品化學檢驗方法之確效規範。台灣,台北。 Acar, O. C.; Pollio, M.; Monaco, R.; Fogliano, V.;Gokmen, V. Effect of Calcium on Acrylamide Level and Sensory Properties of Cookies. Food Bioprocess Tech. 2010, 5 (2), 519-526. Ahn, J. S.; Castle, L.; Clarke, D. B.; Lloyd, A. S.; Philo, M. R.;Speck, D. R. Verifcation of the fndings of acrylamide in heated foods. Food Addit. Contam. 2002, 19 (12), 1116-1124. Amrein, T. M.; Andres, L.; Manzardo, G. G. G.;Amado, R. Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems. J. Agric. Food Chem. 2006, 54 (26), 10253–10261. Amrein, T. M.; Schonbachler, B.; Escher, F.;Amado, R. Acrylamide in Gingerbread: Critical Factors for Formation and Possible Ways for Reduction. J. Agric. Food Chem. 2004, 52, 4282-4288. Ashoor, S. H.;Zent, J. B. Maillard Browning of Common Amino Acids and Sugars. J. Food Sci. 1984, 49 ( 4), 1206–1207. Baum, M.; Fauth, E.; Fritzen, S.; Herrmann, A.; Mertes, P.; Merz, K.; Rudolphi, M.; Zankl, H.;Eisenbrand, G. Acrylamide and glycidamide: genotoxic effects in V79-cells and human blood. Mutat. Res. 2005, 580 (1-2), 61-9. Becalski, A.; Lau, B. P. Y.; Lewis, D.;Seaman, S. W. Acrylamide in Foods: Occurrence, Sources, and Modeling. J. Agric. Food Chem. 2003, 51, 802-808. Belgin Erdogdu, S.; Palazoglu, T. K.; Gokmen, V.; Şenyuva, H. Z.;Ekiz, H. İ. Reduction of acrylamide formation in French fries by microwave pre-cooking of potato strips. J. Sci. Food Agr. 2007, 87 (1), 133-137. Blasiak, J.; Gloc, E.; Wozniak, K.;Czechowska, A. Genotoxicity of acrylamide in human lymphocytes. Chem Biol Interact 2004, 149 (2-3), 137-49. Brathen, E.; Kita, A.; Knutsen, S. H.;Wicklund, T. Addition of Glycine Reduces the Content of Acrylamide in Cereal and Potato Products. J.Agric.FoodChem. 2005, 53, 3259-3264. Brathen, E.;Knutsen, S. Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chem. 2005, 92 (4), 693-700. Burley, V. J.; Greenwood, D. C.; Hepworth, S. J.; Fraser, L. K.; de Kok, T. M.; van Breda, S. G.; Kyrtopoulos, S. A.; Botsivali, M.; Kleinjans, J.; McKinney, P. A.;Cade, J. E. Dietary acrylamide intake and risk of breast cancer in the UK women's cohort. Br. J. Cancer 2010, 103 (11), 1749-54. Claeys, W. L.; De Vleeschouwer, K.;Hendrickx, M. E. Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnol. Prog. 2005a, 21, 1525-1530. Claeys, W. L.; De Vleeschouwer, K.;Hendrickx, M. E. Kinetics of acrylamide formation and elimination during heating of an asparagine-sugar model system. J. Agric. Food Chem. 2005b, 53 (26), 9999-10005. Claus, A.; Carle, R.;Schieber, A. Acrylamide in cereal products: A review. J. Cereal Sci. 2008, 47 (2), 118-133. Claus, A.; Schreiter, P.; Weber, A.; Graeff, S.; Herrmann, W.; Claupein, W.; Schieber, A.;Carle, R. Influence of Agronomic Factors and Extraction Rate on the Acrylamide Contents in Yeast-Leavened Breads. J. Agric. Food Chem. 2006, 54 (23), 8968–8976. Da Costa, G. G.; Churchwell, M. I.; Hamilton, L. P.; Von Tungeln, L. S.; Beland, F. A.; Marques, M. M.;Doerge, D. R. DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice. Chem. Res. Toxicol. 2003, 16, 1328-1337. Doerge, D. R.; da Costa, G. G.; McDaniel, L. P.; Churchwell, M. I.; Twaddle, N. C.;Beland, F. A. DNA adducts derived from administration of acrylamide and glycidamide to mice and rats. Mutat. Res. 2005, 580 (1-2), 131-41. Elder, V.; Fulcher, J.;Leung, H., Method for reducing acrylamide formation in thermally processed foods. 2004, US Patent WO/2004/026042. Elmore, J. S.; Koutsidis, G.; Dodson, A. T.; Mottram, D. S.;Wedzicha, B. L. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. J. Agric. Food Chem. 2005, 53, 1286-1293. Fink, M.; Andersson, R.; Rosen, J.;Aman, P. Effect of Added Asparagine and Glycine on Acrylamide Content in Yeast-Leavened Bread. Cereal Chem. 2006, 83 (2), 218-222. Fritsch, C. W. Measurements of frying fat deterioration: A brief review. J. Am. Oil Chem. Soc. 1981, 58 (3), 272-274. Gokmen, V.; Acar, O. C.; Serpen, A.;Morales, F. J. Effect of leavening agents and sugars on the formation of hydroxymethylfurfural in cookies during baking. Eur. Food Res. Technol. 2007, 226 (5), 1031-1037. Gokmen, V.;Şenyuva, H. Z. Effects of some cations on the formation of acrylamide and furfurals in glucose–asparagine model system. Eur. Food Res. Technol.2006, 225 (5-6), 815-820. Gokmen, V.;Şenyuva, H. Z. Acrylamide formation is prevented by divalent cations during the Maillard reaction. Food Chem. 2007, 103 (1), 196-203. Goesaert, H.; Brijs, K.; Veraverbeke, W. S.; Courtin, C. M.; Gebruers, K.;Delcour, J. A. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci. Tech. 2005, 16 (1-3), 12-30. Gokmen, V.; Palazoglu, T. K.;Senyuva, H. Z. Relation between the acrylamide formation and time–temperature history of surface and core regions of French fries. J. Food Eng. 2006, 77 (4), 972-976. Graf, M.; Amrein, T. M.; Graf, S.; Szalay, R.; Escher, F.;Amado, R. Reducing the acrylamide content of a semi-finished biscuit on industrial scale. LWT - Food Sci. Technol. 2006, 39 (7), 724-728. Grob, K.; Biedermann, M.; Biedermann-Brem, S.; Noti, A.; Imhof, D.; Amrein, T.; Pfefferle, A.;Bazzocco, D. French fries with less than 100 ug/kg acrylamide. A collaboration between cooks and analysts. Eur. Food Res. Technol. 2003, 217 (3), 185-194. Gujral, H. S.;Singh, N. Effect of additives on dough development, gaseous release and bread making properties. Food Res. Int. 1999, 10, 691-697. Halford, N. G.; Muttucumaru, N.; Curtis, T. Y.;Parry, M. A. J. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants. Food Addit. Contam. 2007, 24, 26-36. Hamlet, C. G.; Sadd, P. A.;Liang, L. Effectiveness of methods for reducing acrylamide in bakery products. . J. Agric. Food Chem. 2008, 56, , 6154–6161. Holmes, J. T.;Hoseney, R. C. Chemical leavening: Effect of pH and certain ions on breadmaking properties. Cereal Chem. 1987, 64 (4), 343-383. Holmes, J. T.;Hoseney, R. C. Chemical leavening: Effect of pH and certain ions on breadmaking properties. Cereal Chem. 1987 64 (4), 343-384. Jung, M. Y.; Choi, D. S.;Ju, J. W. A Novel Technique for Limitation of Acrylamide Formation in Fried and Baked Corn Chips and in French Fries. J. Food Sci. 2003, 68 (4), 1287-1290. Keramat, J.; LeBail, A.; Prost, C.;Soltanizadeh, N. Acrylamide in Foods: Chemistry and Analysis. A Review. Food Bioprocess Tech. 2010, 4 (3), 340-363. Levine;, R. A.;Smith;, R. E. Sources of Variability of Acrylamide Levels in a Cracker Model. J. Agric. Food Chem. 2005, 53 (11), 4410–4416. Lindsay, R. C.; Jang, S.;. Model systems for evaluating factors affecting acrylamide formation in deep fried foods. Adv. Exp. Med. Biol. 2005, 561, 329–341. Lofstwst, R. E. Science Communication and the Swedish Acrylamide 'Alarm'. Journal of Health Communication: International Perspectives 2003, 8 (5), 407-432. Martins, S. I. F. S.;Van Boekel, M. A. J. S. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem. 2005, 90 (1-2), 257-269. Medeiros Vinci, R.; Mestdagh, F.;De Meulenaer, B. Acrylamide formation in fried potato products – Present and future, a critical review on mitigation strategies. Food Chem. 2012, 133 (4), 1138-1154. Medeiros Vinci, R.; Mestdagh, F.; Van Poucke, C.; Kerkaert, B.; de Muer, N.; Denon, Q.; Van Peteghem, C.;De Meulenaer, B. Implementation of acrylamide mitigation strategies on industrial production of French fries: challenges and pitfalls. J. Agric. Food Chem. 2011, 59 (3), 898-906. Mestdagh, F.; De Meulenaer, B.;Van Peteghem, C. Influence of oil degradation on the amounts of acrylamide generated in a model system and in French fries. Food Chem. 2007, 100 (3), 1153-1159. Mestdagh, F.; De Wilde, T.; Delporte, K.; Van Peteghem, C.;De Meulenaer, B. Impact of chemical pre-treatments on the acrylamide formation and sensorial quality of potato crisps. Food Chem. 2008, 106 (3), 914-922. Mestdagh, F. J.; De Meulenaer, B.; Van Poucke, C.; Detavernier, C. l.; Cromphout, C.;Van Peteghem, C. Influence of Oil Type on the Amounts of Acrylamide Generated in a Model System and in French Fries. J.Agric.FoodChem. 2005, 53, 6170-6174. Mottram, D. S.; Wedzicha, B. L.;Dodson, A. T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448-449 Rydberg, P.; Eriksson, S.; Tareke, E.; Karlsson, P.; Ehrenberg, L.;Tornqvist, M. Investigations of Factors That Influence the Acrylamide Content of Heated Foodstuffs. J. Agric. Food Chem. 2003, 51 ( 24), 7012–7018. Sadd, P. A.; Hamlet, C. G.;Liang, L. Effectiveness of Methods for Reducing Acrylamide in Bakery Products. J. Agric. Food Chem. 2008, 56 (15), 6154–6161. Sanny, M.; Jinap, S.; Bakker, E. J.; van Boekel, M. A.;Luning, P. A. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments? Food chem. 2012, 135 (3), 2012-20. Sanny, M.; Luning, P. A.; Marcelis, W. J.; Jinap, S.;Van Boekel, M. A. J. S. Impact of control behaviour on unacceptable variation in acrylamide in French fries. Trends Food Sci. Tech. 2010, 21 (5), 256-267. Shoup, F. K.; Pomeranz, Y.;Deyoe, C. W. Amino acid composition of wheat varieties and flours varying widely in bread-making potentialities. J. Food Sci. 1966, 31 (1), 94-101. Stadler, R. H.; Blank, I.; Verga, N.; Robert, F.; Hau, J.; Guy, P. A.; Robert, M.;Riediker, S. Acrylamide from Maillard reaction porducts. Nature 2002, 419, 449-450. Surdyk, N.; Rosen, J.; Andersson, R.;Aman, P. Effects of Asparagine, Fructose, and Baking Conditions on Acrylamide Content in Yeast-Leavened Wheat Bread. J. Agric. Food Chem. 2004, 52 (7), 2047–2051. Suutarinen, J.; Honkapaa, K.; Heinio, R.-L.; Autio, K.; Mustranta, A.; Karppinen, S.; Klutamo, T.; Llukkonen-Lllja, H.;Mokkila, M. Effects of Calcium Chloride-based Prefreezing Treatments on the Quality Factors of Strawberry Jams. J. Food Sci. 2002, 67 (884–893). Taeymans, D.; Wood, J.; Ashby, P.; Blank, I.; Studer, A.; Stadler, R. H.; Gonde, P.; Van Eijck, P.; Lalljie, S.; Lingnert, H.; Lindblom, M.; Matissek, R.; Muller, D.; Tallmadge, D.; O'Brien, J.; Thompson, S.; Silvani, D.;Whitmore, T. A review of acrylamide: an industry perspective on research, analysis, formation, and control. Crit. Rev. Food Sci. Nutr. 2004, 44 (5), 323-47. Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.;Tornqvist, M. Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs. J. Agric. Food. Chem. 2002, 50, 4998-5006. Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.;Tornqvist, M. Acrylamide: A Cooking Carcinogen? Chem. Res. Toxicol. 2000, 13, 517-522. Taubert, D.; Harlfinger, S.; Henkes, L.; Berkels, R.;Schomig, E. Influence of processing parameters on acrylamide formation during frying of potatoes. J. Agric. Food Chem. 2004, 52, 2735-2739. Totani, N.; Takada, M.; Yawata, M.;Moriya, M. Acrylamide Content of Commercial Frying Oil. J. Oleo Sci. 2007, 56 (2), 103-106. Tseng, Y. C.; Moreira, R.;Sun, X. Total frying-use time effects on soybean-oil deterioration and on tortilla chip quality. Int. J. Food Sci. Technol. 1996, 31, 287–294. Tuta, S.; Palazoğlu, T. K.;Gokmen, V. Effect of microwave pre-thawing of frozen potato strips on acrylamide level and quality of French fries. J. Food Eng. 2010, 97 (2), 261-266. Tyrlika, S. K.; Szerszeńa, D.; Olejnikb, M.;Danikiewiczb, W. Selective dehydration of glucose to hydroxymethylfurfural and a one-pot synthesis of a 4-acetylbutyrolactone from glucose and trioxane in solutions of aluminium salts. Carbohydr. Res. 1999, 315, 268-272. Varoujan A. Yaylayan; Andrzej Wnorowski;Carolina Perez Locas. Why Asparagine Needs Carbohydrates To Generate Acrylamide. J. Agric. Food Chem. 2003, 51, 1753-1757. Vattem, D.;Shetty, K. Acrylamide in food: a model for mechanism of formation and its reduction. Innov. Food Sci. Emerg. Tech. 2003, 4 (3), 331-338. Wilson, K. M.; Rimm, E. B.; Thompson, K. M.;Mucci, L. A. Dietary Acrylamide and Cancer Risk in Humans: A Review. J. fur Verbrauch. Lebensm. 2006, 1 (1), 19-27. Yaylayan, V. A.;Stadler, R. H. Acrylamide Formation in Food: A Mechanistic Perspective. J. AOAC Int. 2005, 88 (1), 262-267. 台中教育大學.。http://scigame.ntcu.edu.tw/site1/game_chemistry4.html (閱覽日期:2014.07.14) 張淑美。膨脹劑: 含碳酸氫銨的烘焙食品知多少?。http://rd.kingnet.com.tw/bloghealth.html?cid=7972 (更新日期:2008.10.19 閱覽日期:2014.07.14) 楊嘉慧。炸出香、鬆、脆油條的科學。http://paper.udn.com/udnpaper/PIE0010/142030/web/ (閱覽日期:2014.07.14) 維基百科.。油條。http://zh.wikipedia.org/wiki/%E6%B2%B9%E6%9D%A1 (閱覽日期:2014.07.14) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57682 | - |
dc.description.abstract | 食品中的還原醣 (Reducing sugar)和天門冬醯胺 (Asparagine)於高溫下作用,會生成丙烯醯胺 (Acrylamide; 簡稱 AA)。高劑量的AA已被證實與致癌和神經毒有關。前人研究指出膨脹劑可能為影響油條AA生成的重要因子。本研究目的是尋找降低油條中丙烯醯胺生成之方法,以減少國人暴露量。試驗設計採用複因子分析,探討碳酸氫銨、碳酸氫鈉與硫酸鋁鉀 (無水)對於油條AA生成的影響。實驗結果可知,鹼性膨脹劑會增加AA含量,其中碳酸氫銨之影響較碳酸氫鈉顯著,硫酸鋁鉀 (無水)則能降低AA的生成。以比體積和AA含量依序篩選,碳酸氫銨、碳酸氫鈉與硫酸鋁鉀 (無水)添加比例分別為1%、0%、1%,AA含量為101 ± 8 ppb,比體積為5.40 ± 0.12 cm3/g,可以作為低AA油條製備之參考配方。雖然碳酸氫銨促進AA含量增加,但適量地添加硫酸鋁鉀 (無水)能有效的降低AA,並兼顧比體積。此外,甘胺酸、氯化鈣和氯化鎂亦有減量的效果,其中1%氯化鎂能降低穀研所配方60.88% AA生成量,亦增加油條的比體積14.71%。 | zh_TW |
dc.description.abstract | In food, acrylamide is formed due to the interactions between reducing sugars and asparagine at high temperature. High dose of acrylamide (AA) has shown to be relevant to carcinogenicity and neurotoxicity. Several studies have shown that chemical leavenings may be the key factor affecting the formation of AA in TC. The objective of this study was to explore a new formula yielding low AA in product. Thus, the exposure of AA by Taiwanese could be reduced. Factorial design was employed to analyze effect of ammonium bicarbonate, sodium bicarbonate, and aluminum potassium sulfate on AA formation in TC. According to the result, basic leavenings increased AA formation. Ammonium bicarbonate yield more impact than sodium bicarbonate. Aluminum Potassium Sulfate could decrease AA formation. To obtain possibly low AA with acceptable specific volume, a combination of 1% ammonium bicarbonate, 0% sodium bicarbonate, and 1% aluminum potassium sulfate was chosen with AA content 101 ± 8 ppb and specific volume 5.40 ± 0.12 cm3/g. In addition, glycine, MgCl2, and CaCl2 could further decrease AA content. However, 1% MgCl2 could decrease 60.88% AA formation, and increase 14.71% specific volume in GY formula. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:57:46Z (GMT). No. of bitstreams: 1 ntu-103-R01641006-1.pdf: 1508574 bytes, checksum: 7ccb7beed5ab8ea030f309da3a0d9b47 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 謝誌 ……………………………………………………………I
中文摘要 ……………………………………………………………II 英文摘要 ……………………………………………………………III 總目錄 ……………………………………………………………IV 圖目錄 ……………………………………………………………VI 表目錄 ……………………………………………………………VII 壹、 前言…………………………………………………………1 貳、 文獻整理…………………………………………………2 1. 油條…………………………………………………………2 1.1 油條的歷史………………………………………………………2 1.2 油條中的化學 …………………………………………………2 2. 丙烯醯胺…………………………………………………6 2.1 於食物中被發現的經過……………………………………… 6 2.2 丙烯醯胺的毒性……………………………………………… 7 2.3含有丙烯醯胺的食品……………………………………………8 2.4 降低食品中丙烯醯胺之方法…………………………………12 參、 研究目的與實驗設計………………………………… 15 1. 研究目的 ………………………………………………15 2. 試驗設計 ………………………………………………15 肆、 材料與方法…………………………………………… 17 1. 油條的製作…………………………………………… 17 1.1 試驗材料 ………………………………………………17 1.2 儀器 ……………………………………………………17 1.3 製作方法 ………………………………………………18 2. ㄧ般基本成分分析…………………………………… 20 2.1 水份含量 ………………………………………………20 2.2 粗脂肪 ………………………………………………20 2.3 粗蛋白 ………………………………………………20 2.4 灰份 ………………………………………………21 3. 丙烯醯胺含量測定…………………………………… 21 3.1 標準品 ………………………………………………21 3.2 試藥 ………………………………………………21 3.3 器具 ………………………………………………22 3.4 儀器及裝置…………………………………………… 22 3.5 方法 ………………………………………………23 3.6 回收試驗 ………………………………………………25 3.7 品保試驗 ………………………………………………27 4. 比體積 ………………………………………………29 5. 麵團pH值 ………………………………………………29 6. 統計分析方法………………………………………… 29 伍、 結果與討論 ……………………………………………30 1. 市售油條之丙烯醯胺含量和比體積比較…………… 30 2. 麵粉基本組成分……………………………………… 31 3. 添加物對丙烯醯胺含量的影響……………………… 32 3.1 33複因子分析………………………………………… 32 3.2 27組組合多重比較…………………………………… 33 4. 丙烯醯胺含量相關性之研究………………………… 35 4.1 pH值對丙烯醯胺含量的影響 …………………………35 4.2 比體積對丙烯醯胺含量的影響 ………………………39 5. 降低油條中丙烯醯胺含量之研究…………………… 42 5.1 調整配方 ………………………………………………42 5.2 氯化鈣、氯化鎂與甘胺酸之減量效果……………… 43 陸、 結論…………………………………………………… 47 柒、 參考文獻 ………………………………………………48 | |
dc.language.iso | zh-TW | |
dc.title | 降低油條中丙烯醯胺之方法 | zh_TW |
dc.title | Mitigation strategy of acrylamide content in twisted cruller | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧訓,陳炳輝,陳時欣,鄭維智 | |
dc.subject.keyword | 油條,丙烯醯胺,減量方法,碳酸氫銨,碳酸氫鈉,硫酸鋁鉀 (無水), | zh_TW |
dc.subject.keyword | Twisted Cruller,Acrylamide,Mitigation Strategies,Ammonium bicarbonate,Sodium Bicarbonate,Aluminum Potassium Sulfate, | en |
dc.relation.page | 53 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。