Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57572
Title: 基於監督式深度學習之 ICD-10 自動編碼與訓練系統
Automatic ICD-10 Coding and Training System with DNN Based on Supervised Learning
Authors: Ssu-Ming Wang
王思敏
Advisor: 賴飛羆(Fei-Pei Lai)
Keyword: 自然語言處理,深度學習,國際疾病分類標準,循環神經網路,文字分類,
Natural language processing,Deep learning,ICD-10,RNN,Text classification,
Publication Year : 2020
Degree: 碩士
Abstract: 背景: 目前,醫療系統及保險申報已廣泛使用ICD 編碼作為給付依據,然而ICD的分類作業仍主要依靠人力閱讀大量的文字資料作為分類的依據,耗時且耗力。自2014 年台灣醫療健保申報的依據由ICD-9 改成ICD-10 後,ICD 的分類又變得更細節、容易混淆,即使是專業的疾病分類師都需要平均至少20 分鐘才能完成一個案例的編碼。
目標: 本篇研究的目標即是建構一個能夠自動根據醫療診斷資料進行ICD-10 編碼的深度學習模型,以利降低耗費在疾病編碼的時間及人力成本。
方法: 在此篇研究中,我們使用台大醫院的診斷資料並應用自然語言處裡的技術(包含Glove, Word2Vec, ELMo, BERT, SHA_RNN)於深度學習網路中以實現ICD-10 的自動編碼。此外,我們亦導入注意力機制於模型中來視覺化決定編碼的重點文字依據,以提供ICD-10 的新手使用者編碼訓練的服務。
結果: 在各個實驗結果中,使用BERT 詞嵌入和Gated recurrent unit (GRU) 的分類模型在ICD-10-CM 與ICD-10-PCS 的編碼上達到最好的結果 (F1-Score 0.715 與0.615)。訓練完的模型亦導入ICD-10 的網頁服務中,以提供所有的ICD-10 使用者自動編碼及訓練的服務。
結論: 目前,這些模型及相關的網頁服務以提供所有ICD-10 使用者使用,將編碼時間從最多40 分鐘降低至約莫2 分鐘即可得到答案,大幅降低ICD-10 使用者編碼的時間。
Background: Nowadays, ICD code is widely used as the reference in medical system and billing purposes. However, classifying diseases into ICD codes still mainly relies on humans reading a large amount of written materials as the basis for coding. Coding is both laborious and time consuming. Since the conversion of ICD-9 to ICD-10, the coding task became much more confusing, even a disease coder with professional abilities takes about 20 minutes per case on average.
Objective: This thesis aims at constructing a deep learning model for ICD-10 coding, where the model is to automatically determine the corresponding diagnostic and procedure codes based solely on free-text medical notes to reduce human effort.
Methods: We used NTUH diagnosis records as the resources and applied NLP techniques, including Glove, Word2Vec, ELMo, BERT, and SHA-RNN, on the DNN architecture to implement ICD-10 auto-coding. Besides, we introduce the attention mechanism into the model to extract the key points from the diagnosis and visualize the coding reference for training freshman in ICD-10.
Results: In experiments on the NTUH dataset, our predicting result could achieve F1-score of 0.715 and 0.615 on ICD-10-CM and ICD-10-PCS code with BERT embedding approach on GRU classification model. The well-trained models are applied on the ICD-10 web service for coding and training to all ICD-10 users.
Conclusions: The proposed model and web service significantly reduces manpower in coding time; coding time is reduced from 20 mins ~ 40 mins to less than 2 mins.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57572
DOI: 10.6342/NTU202001651
Fulltext Rights: 有償授權
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
U0001-2007202015161200.pdf
  Restricted Access
3.99 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved