Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57538
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顧記華(Jih-Hwa Guh)
dc.contributor.authorPing-Jung Wuen
dc.contributor.author吳品瑢zh_TW
dc.date.accessioned2021-06-16T06:50:31Z-
dc.date.available2019-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-07-22
dc.identifier.citation[1] Smith, D. C., Dunn, R. L., Strawderman, M. S., & Pienta, K. J. (1998). Change in serum prostate-specific antigen as a marker of response to cytotoxic therapy for hormone-refractory prostate cancer. J Clin Oncol, 16(5), 1835-1843.
[2] Russell, P. J., Jackson, P., & Kingsley, E. A. (2003). Prostate Cancer Methods and Protocols (Vol. 81): Springer.
[3] Chen, H. Y., Shiao, M. S., Huang, Y. L., Shen, C. C., Lin, Y. L., Kuo, Y. H., & Chen, C. C. (1999). Antioxidant principles from Ephemerantha lonchophylla. J Nat Prod, 62(9), 1225-1227.
[4] Chen, C. C., Huang, Y. L., & Teng, C. M. (2000). Antiplatelet aggregation principles from Ephemerantha lonchophylla. Planta medica, 66(4), 372-374.
[5] Lin, T.-H., Chang, S.-J., Chen, C.-C., Wang, J.-P., & Tsao, L.-T. (2001). Two Phenanthraquinones from Dendrobium m oniliforme. J Nat Prod, 64(8), 1084-1086.
[6] Lee, Y. H., Park, J. D., Baek, N. I., Kim, S. I., & Ahn, B. Z. (1995). In vitro and in vivo antitumoral phenanthrenes from the aerial parts of Dendrobium nobile. Planta Med, 61(2), 178-180.
[7] Huang, Y. C., Guh, J. H., & Teng, C. M. (2005). Denbinobin-mediated anticancer effect in human K562 leukemia cells: role in tubulin polymerization and Bcr-Abl activity. Journal of biomedical science, 12(1), 113-121.
[8] Yang, K. C., Uen, Y. H., Suk, F. M., Liang, Y. C., Wang, Y. J., Ho, Y. S., Li, I. H., & Lin, S. Y. (2005). Molecular mechanisms of denbinobin-induced anti-tumorigenesis effect in colon cancer cells. WORLD JOURNAL OF GASTROENTEROLOGY, 11(20), 3040.
[9] Galluzzi, L., Vitale, I., Abrams, J., Alnemri, E., Baehrecke, E., Blagosklonny, M., Dawson, T., Dawson, V., El-Deiry, W., & Fulda, S. (2012). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death & Differentiation, 19(1), 107-120.
[10] Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer, 26(4), 239.
[11] Fadok, V. A., Voelker, D. R., Campbell, P. A., Cohen, J. J., Bratton, D. L., & Henson, P. M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. The Journal of Immunology, 148(7), 2207-2216.
[12] Denecker, G., Vercammen, D., Steemans, M., Vanden Berghe, T., Brouckaert, G., Van Loo, G., Zhivotovsky, B., Fiers, W., Grooten, J., & Declercq, W. (2001). Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death & Differentiation, 8(8).
[13] Kroemer, G., & Reed, J. C. (2000). Mitochondrial control of cell death. Nature medicine, 6(5).
[14] Van Loo, G., Demol, H., Van Gurp, M., Hoorelbeke, B., Schotte, P., Bayaert, R., Zhivotovsky, B., Gevaert, K., Declercq, W., & Vandekerckhove, J. (2002). A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death & Differentiation, 9(3).
[15] Proskuryakov, S. Y., Konoplyannikov, A. G., & Gabai, V. L. (2003). Necrosis: a specific form of programmed cell death? Exp Cell Res, 283(1), 1-16.
[16] Van Herreweghe, F., Festjens, N., Declercq, W., & Vandenabeele, P. (2010). Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cell Mol Life Sci, 67(10), 1567-1579.
[17] Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., & Kroemer, G. (2010). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol, 11(10), 700-714.
[18] Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741.
[19] Eskelinen, E. L. (2008). New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol, 266, 207-247.
[20] Mijaljica, D., Prescott, M., & Devenish, R. J. (2011). Microautophagy in mammalian cells. Autophagy, 7(7), 673-682.
[21] Sandberg, M., & Borg, L. A. (2006). Intracellular degradation of insulin and crinophagy are maintained by nitric oxide and cyclo-oxygenase 2 activity in isolated pancreatic islets. Biol Cell, 98(5), 307-315.
[22] Codogno, P., & Meijer, A. J. (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ, 12 Suppl 2, 1509-1518.
[23] Scherz‐Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., & Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. The EMBO journal, 26(7), 1749-1760.
[24] Xiong, Y., Contento, A. L., Nguyen, P. Q., & Bassham, D. C. (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant physiology, 143(1), 291-299.
[25] Meley, D., Bauvy, C., Houben-Weerts, J. H., Dubbelhuis, P. F., Helmond, M. T., Codogno, P., & Meijer, A. J. (2006). AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem, 281(46), 34870-34879.
[26] Hoyer-Hansen, M., Bastholm, L., Szyniarowski, P., Campanella, M., Szabadkai, G., Farkas, T., Bianchi, K., Fehrenbacher, N., Elling, F., Rizzuto, R., Mathiasen, I. S., & Jaattela, M. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell, 25(2), 193-205.
[27] Liang, J., Shao, S. H., Xu, Z.-X., Hennessy, B., Ding, Z., Larrea, M., Kondo, S., Dumont, D. J., Gutterman, J. U., & Walker, C. L. (2007). The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biology, 9(2), 218-224.
[28] Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., & Fan, Y. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell, 10(1), 51-64.
[29] Debnath, J., Baehrecke, E. H., & Kroemer, G. (2005). Does autophagy contribute to cell death? Autophagy, 1(2), 66-74.
[30] Kourtis, N., & Tavernarakis, N. (2009). Autophagy and cell death in model organisms. Cell Death Differ, 16(1), 21-30.
[31] Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516.
[32] Los, M., Wesselborg, S., & Schulze-Osthoff, K. (1999). The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity, 10(6), 629-639.
[33] Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305(5684), 626-629.
[34] Breckenridge, D. G., & Xue, D. (2004). Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol, 16(6), 647-652.
[35] Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., & Vandenabeele, P. (2004). Toxic proteins released from mitochondria in cell death. Oncogene, 23(16), 2861-2874.
[36] Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 9(1), 47-59.
[37] Garcia-Saez, A. (2012). The secrets of the Bcl-2 family. Cell Death & Differentiation, 19(11), 1733-1740.
[38] Merino, D., Giam, M., Hughes, P. D., Siggs, O. M., Heger, K., O'Reilly, L. A., Adams, J. M., Strasser, A., Lee, E. F., & Fairlie, W. D. (2009). The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. The Journal of cell biology, 186(3), 355-362.
[39] Llambi, F., Moldoveanu, T., Tait, S. W., Bouchier-Hayes, L., Temirov, J., McCormick, L. L., Dillon, C. P., & Green, D. R. (2011). A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Molecular cell, 44(4), 517-531.
[40] Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell, 9(3), 459-470.
[41] Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S., & Dixit, V. M. (1998). An induced proximity model for caspase-8 activation. Journal of Biological Chemistry, 273(5), 2926-2930.
[42] Chang, D. W., Xing, Z., Capacio, V. L., Peter, M. E., & Yang, X. (2003). Interdimer processing mechanism of procaspase‐8 activation. The EMBO journal, 22(16), 4132-4142.
[43] Riedl, S. J., & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol, 5(11), 897-907. doi: 10.1038/nrm1496
[44] Lopez, J., & Meier, P. (2010). To fight or die—inhibitor of apoptosis proteins at the crossroad of innate immunity and death. Curr Opin Cell Biol, 22(6), 872-881.
[45] Choi, S.-L., Kim, S.-J., Lee, K.-T., Kim, J., Mu, J., Birnbaum, M. J., Soo Kim, S., & Ha, J. (2001). The Regulation of AMP-Activated Protein Kinase by H2O2. Biochem Biophys Res Commun, 287(1), 92-97.
[46] Crook, N. E., Clem, R. J., & Miller, L. K. (1993). An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol, 67(4), 2168-2174.
[47] Saybasili, H., Yuksel, M., Haklar, G., & Yalcin, A. S. (2001). Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxidants and Redox Signaling, 3(6), 1099-1104.
[48] Staniek, K., Gille, L., Kozlov, A. V., & Nohl, H. (2002). Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways. Free radical research, 36(4), 381-387.
[49] Vignais, P. (2002). The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cellular and Molecular Life Sciences CMLS, 59(9), 1428-1459.
[50] Brar, S. S., Corbin, Z., Kennedy, T. P., Hemendinger, R., Thornton, L., Bommarius, B., Arnold, R. S., Whorton, A. R., Sturrock, A. B., & Huecksteadt, T. P. (2003). NOX5 NAD (P) H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. American Journal of Physiology-Cell Physiology, 285(2), C353-C369.
[51] Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S., & Floyd, R. A. (2000). Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology and Medicine, 28(10), 1456-1462.
[52] Schafer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30(11), 1191-1212.
[53] Sasada, T., Iwata, S., Sato, N., Kitaoka, Y., Hirota, K., Nakamura, K., Nishiyama, A., Taniguchi, Y., Takabayashi, A., & Yodoi, J. (1996). Redox control of resistance to cis-diamminedichloroplatinum (II)(CDDP): protective effect of human thioredoxin against CDDP-induced cytotoxicity. Journal of Clinical Investigation, 97(10), 2268.
[54] Tanaka, T., Kimura, M., Matsunaga, K., Fukada, D., Mori, H., & Okano, Y. (1999). Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer research, 59(9), 2041-2044.
[55] Sakakura, C., Hagiwara, A., Yasuoka, R., Fujita, Y., Nakanishi, M., Masuda, K., Shimomura, K., Nakamura, Y., Inazawa, J., & Abe, T. (2001). Tumour-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. British journal of cancer, 84(6).
[56] Bischoff, J. R., Anderson, L., Zhu, Y., Mossie, K., Ng, L., Souza, B., Schryver, B., Flanagan, P., Clairvoyant, F., & Ginther, C. (1998). A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. The EMBO journal, 17(11), 3052-3065.
[57] Gritsko, T. M., Coppola, D., Paciga, J. E., Yang, L., Sun, M., Shelley, S. A., Fiorica, J. V., Nicosia, S. V., & Cheng, J. Q. (2003). Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res, 9(4), 1420-1426.
[58] Zhu, J., Abbruzzese, J. L., Izzo, J., Hittelman, W. N., & Li, D. (2005). AURKA amplification, chromosome instability, and centrosome abnormality in human pancreatic carcinoma cells. Cancer Genet Cytogenet, 159(1), 10-17. doi: 10.1016/j.cancergencyto.2004.09.008
[59] Katayama, H., Brinkley, W. R., & Sen, S. (2003). The Aurora kinases: role in cell transformation and tumorigenesis. Cancer and metastasis reviews, 22(4), 451-464.
[60] Marumoto, T., Zhang, D., & Saya, H. (2005). Aurora-A—a guardian of poles. Nature Reviews Cancer, 5(1), 42-50.
[61] Giet, R., Petretti, C., & Prigent, C. (2005). Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends in cell biology, 15(5), 241-250.
[62] Kitzen, J. J., de Jonge, M. J., & Verweij, J. (2010). Aurora kinase inhibitors. Crit Rev Oncol Hematol, 73(2), 99-110.
[63] Nigg, E. A. (2001). Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol, 2(1), 21-32.
[64] Hardie, D. G., Carling, D., & Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annual review of biochemistry, 67(1), 821-855.
[65] Hawley, S. A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D., & Hardie, D. G. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. Journal of Biological Chemistry, 271(44), 27879-27887.
[66] Momcilovic, M., Hong, S. P., & Carlson, M. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. Journal of Biological Chemistry, 281(35), 25336-25343.
[67] Hawley, S. A., Selbert, M. A., Goldstein, E. G., Edelman, A. M., Carling, D., & Hardie, D. G. (1995). 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. Journal of Biological Chemistry, 270(45), 27186-27191.
[68] Hong, S. P., Leiper, F. C., Woods, A., Carling, D., & Carlson, M. (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A, 100(15), 8839-8843.
[69] Warden, S. M., Richardson, C., O'Donnell, J., Jr., Stapleton, D., Kemp, B. E., & Witters, L. A. (2001). Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J, 354(Pt 2), 275-283.
[70] Oakhill, J. S., Chen, Z. P., Scott, J. W., Steel, R., Castelli, L. A., Ling, N., Macaulay, S. L., & Kemp, B. E. (2010). beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci U S A, 107(45), 19237-19241.
[71] Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci, 22(1), 12-13.
[72] Veech, R. L., Lawson, J. W., Cornell, N. W., & Krebs, H. A. (1979). Cytosolic phosphorylation potential. J Biol Chem, 254(14), 6538-6547.
[73] Hellsten, Y., Richter, E. A., Kiens, B., & Bangsbo, J. (1999). AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. The Journal of physiology, 520(3), 909-920.
[74] Bolster, D. R., Crozier, S. J., Kimball, S. R., & Jefferson, L. S. (2002). AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem, 277(27), 23977-23980.
[75] Kimura, N., Tokunaga, C., Dalal, S., Richardson, C., Yoshino, K. i., Hara, K., Kemp, B. E., Witters, L. A., Mimura, O., & Yonezawa, K. (2003). A possible linkage between AMP‐activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes to cells, 8(1), 65-79.
[76] Cheng, S. W., Fryer, L. G., Carling, D., & Shepherd, P. R. (2004). Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. Journal of Biological Chemistry, 279(16), 15719-15722.
[77] Reiter, A. K., Bolster, D. R., Crozier, S. J., Kimball, S. R., & Jefferson, L. S. (2005). Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside. American Journal of Physiology-Endocrinology and Metabolism, 288(5), E980-E988.
[78] Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P., & Snyder, S. H. (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 78(1), 35-43.
[79] Schmelzle, T., & Hall, M. N. (2000). TOR, a central controller of cell growth. Cell, 103(2), 253-262.
[80] Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell, 124(3), 471-484.
[81] Schalm, S. S., Fingar, D. C., Sabatini, D. M., & Blenis, J. (2003). TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol, 13(10), 797-806.
[82] Nojima, H., Tokunaga, C., Eguchi, S., Oshiro, N., Hidayat, S., Yoshino, K., Hara, K., Tanaka, N., Avruch, J., & Yonezawa, K. (2003). The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem, 278(18), 15461-15464.
[83] Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410(6824), 37-40.
[84] English, J., Pearson, G., Wilsbacher, J., Swantek, J., Karandikar, M., Xu, S., & Cobb, M. H. (1999). New insights into the control of MAP kinase pathways. Exp Cell Res, 253(1), 255-270.
[85] Zhang, F., Strand, A., Robbins, D., Cobb, M. H., & Goldsmith, E. J. (1994). Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature, 367(6465), 704-11.
[86] Zarubin, T., & Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res, 15(1), 11-18.
[87] Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J., & Davis, R. J. (1995). Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. Journal of Biological Chemistry, 270(13), 7420-7426.
[88] Lee, T., Kim, S. J., & Sumpio, B. E. (2003). Role of PP2A in the regulation of p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. J Cell Physiol, 194(3), 349-355.
[89] Ge, B., Gram, H., Di Padova, F., Huang, B., New, L., Ulevitch, R. J., Luo, Y., & Han, J. (2002). MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science, 295(5558), 1291-1294.
[90] Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst, 82(13), 1107-1112.
[91] Behl, C., Davis, J. B., Lesley, R., & Schubert, D. (1994). Hydrogen peroxide mediates amyloid beta protein toxicity. Cell, 77(6), 817-827.
[92] Kroemer, G., & Reed, J. C. (2000). Mitochondrial control of cell death. Nat Med, 6(5), 513-519.
[93] Willis, S. N., Chen, L., Dewson, G., Wei, A., Naik, E., Fletcher, J. I., Adams, J. M., & Huang, D. C. (2005). Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes & development, 19(11), 1294-1305.
[94] Clohessy, J. G., Zhuang, J., de Boer, J., Gil-Gomez, G., & Brady, H. J. (2006). Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem, 281(9), 5750-5759.
[95] Kim, H., Rafiuddin-Shah, M., Tu, H. C., Jeffers, J. R., Zambetti, G. P., Hsieh, J. J., & Cheng, E. H. (2006). Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol, 8(12), 1348-1358.
[96] Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F., & Wang, X. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes & development, 17(12), 1475-1486.
[97] Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., & Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 288(5468), 1053-1058.
[98] Chen, T. H., Pan, S. L., Guh, J. H., Chen, C. C., Huang, Y. T., Pai, H. C., & Teng, C. M. (2008). Denbinobin induces apoptosis by apoptosis-inducing factor releasing and DNA damage in human colorectal cancer HCT-116 cells. Naunyn-Schmiedeberg's archives of pharmacology, 378(5), 447-457.
[99] Kuo, C. T., Hsu, M. J., Chen, B. C., Chen, C. C., Teng, C. M., Pan, S. L., & Lin, C. H. (2008). Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction. Toxicol Lett, 177(1), 48-58.
[100] Weng, H. Y., Hsu, M. J., Chen, C. C., Chen, B. C., Hong, C. Y., Teng, C. M., Pan, S. L., Chiu, W. T., & Lin, C. H. (2013). Denbinobin induces human glioblastoma multiforme cell apoptosis through the IKKalpha-Akt-FKHR signaling cascade. Eur J Pharmacol, 698(1-3), 103-109.
[101] Yang, C., Guh, J., Teng, C., Chen, C., & Chen, P. (2009). Combined treatment with Denbinobin and Fas ligand has a synergistic cytotoxic effect in human pancreatic adenocarcinoma BxPC‐3 cells. British journal of pharmacology, 157(7), 1175-1185.
[102] Petersen, S. L., Peyton, M., Minna, J. D., & Wang, X. (2010). Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression. Proc Natl Acad Sci U S A, 107(26), 11936-11941.
[103] Nagata, M., Nakayama, H., Tanaka, T., Yoshida, R., Yoshitake, Y., Fukuma, D., Kawahara, K., Nakagawa, Y., Ota, K., Hiraki, A., & Shinohara, M. (2011). Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br J Cancer, 105(9), 1322-1330.
[104] Stanculescu, A., Bembinster, L. A., Borgen, K., Bergamaschi, A., Wiley, E., & Frasor, J. (2010). Estrogen promotes breast cancer cell survival in an inhibitor of apoptosis (IAP)-dependent manner. Horm Cancer, 1(3), 127-135.
[105] Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., Turk, B. E., & Shaw, R. J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell, 30(2), 214-226.
[106] Sinnett-Smith, J., Kisfalvi, K., Kui, R., & Rozengurt, E. (2013). Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: dependence on glucose concentration and role of AMPK. Biochem Biophys Res Commun, 430(1), 352-357.
[107] Cope, C. L., Gilley, R., Balmanno, K., Sale, M. J., Howarth, K. D., Hampson, M., Smith, P. D., Guichard, S. M., & Cook, S. J. (2014). Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J Cell Sci, 127(Pt 4), 788-800.
[108] Niedzwiecka, A., Marcotrigiano, J., Stepinski, J., Jankowska-Anyszka, M., Wyslouch-Cieszynska, A., Dadlez, M., Gingras, A. C., Mak, P., Darzynkiewicz, E., Sonenberg, N., Burley, S. K., & Stolarski, R. (2002). Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J Mol Biol, 319(3), 615-635.
[109] Slepenkov, S. V., Darzynkiewicz, E., & Rhoads, R. E. (2006). Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism. J Biol Chem, 281(21), 14927-14938.
[110] Hardie, D. G. (2011). AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev, 25(18), 1895-1908.
[111] Trachootham, D., Lu, W., Ogasawara, M. A., Valle, N. R.-D., & Huang, P. (2008). Redox regulation of cell survival. Antioxidants & redox signaling, 10(8), 1343-1374.
[112] Toyokuni, S., Okamoto, K., Yodoi, J., & Hiai, H. (1995). Persistent oxidative stress in cancer. FEBS Lett, 358(1), 1-3.
[113] Hileman, E. O., Liu, J., Albitar, M., Keating, M. J., & Huang, P. (2004). Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer chemotherapy and pharmacology, 53(3), 209-219.
[114] Behrend, L., Henderson, G., & Zwacka, R. M. (2003). Reactive oxygen species in oncogenic transformation. Biochem Soc Trans, 31(Pt 6), 1441-1444.
[115] Ralph, S. J., Rodriguez-Enriquez, S., Neuzil, J., & Moreno-Sanchez, R. (2010). Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med, 31(1), 29-59.
[116] Wang, Y., Wang, J., Xiao, X., Shan, Y., Xue, B., Jiang, G., He, Q., Chen, J., Xu, H., & Zhao, R. (2013). Piperlongumine induces autophagy by targeting p38 signaling. Cell death & disease, 4(10), e824.
[117] Tikhomirov, O., & Carpenter, G. (2004). Ligand-induced, p38-dependent apoptosis in cells expressing high levels of epidermal growth factor receptor and ErbB-2. Journal of Biological Chemistry, 279(13), 12988-12996.
[118] Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., & Gotoh, Y. (1997). Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science, 275(5296), 90-94.
[119] Emerling, B. M., Weinberg, F., Snyder, C., Burgess, Z., Mutlu, G. M., Viollet, B., Budinger, G. R., & Chandel, N. S. (2009). Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med, 46(10), 1386-1391.
[120] Zmijewski, J. W., Banerjee, S., Bae, H., Friggeri, A., Lazarowski, E. R., & Abraham, E. (2010). Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. Journal of Biological Chemistry, 285(43), 33154-33164.
[121] Lee, Y. K., Hwang, J. T., Kwon, D. Y., Surh, Y. J., & Park, O. J. (2010). Induction of apoptosis by quercetin is mediated through AMPKα1/ASK1/p38 pathway. Cancer letters, 292(2), 228-236.
[122] Nomura, K., Lee, M., Banks, C., Lee, G., & Morris, B. J. (2013). An ASK1-p38 signalling pathway mediates hydrogen peroxide-induced toxicity in NG108-15 neuronal cells. Neuroscience letters, 549, 163-167.
[123] Xu, J., Walsh, S. B., Verney, Z. M., Kopelovich, L., Elmets, C. A., & Athar, M. (2011). Procarcinogenic effects of cyclosporine A are mediated through the activation of TAK1/TAB1 signaling pathway. Biochem Biophys Res Commun, 408(3), 363-368.
[124] Chang, M. Y., Ho, F. M., Wang, J. S., Kang, H. C., Chang, Y., Ye, Z. X., & Lin, W. W. (2010). AICAR induces cyclooxygenase-2 expression through AMP-activated protein kinase-transforming growth factor-beta-activated kinase 1-p38 mitogen-activated protein kinase signaling pathway. Biochem Pharmacol, 80(8), 1210-1220.
[125] Evans, R., Naber, C., Steffler, T., Checkland, T., Keats, J., Maxwell, C., Perry, T., Chau, H., Belch, A., Pilarski, L., & Reiman, T. (2008). Aurora A kinase RNAi and small molecule inhibition of Aurora kinases with VE-465 induce apoptotic death in multiple myeloma cells. Leuk Lymphoma, 49(3), 559-569.
[126] Harrington, E. A., Bebbington, D., Moore, J., Rasmussen, R. K., Ajose-Adeogun, A. O., Nakayama, T., Graham, J. A., Demur, C., Hercend, T., Diu-Hercend, A., Su, M., Golec, J. M., & Miller, K. M. (2004). VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med, 10(3), 262-267.
[127] Kaestner, P., Stolz, A., & Bastians, H. (2009). Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther, 8(7), 2046-2056.
[128] Marumoto, T., Hirota, T., Morisaki, T., Kunitoku, N., Zhang, D., Ichikawa, Y., Sasayama, T., Kuninaka, S., Mimori, T., & Tamaki, N. (2002). Roles of aurora‐A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes to cells, 7(11), 1173-1182.
[129] Gizatullin, F., Yao, Y., Kung, V., Harding, M. W., Loda, M., & Shapiro, G. I. (2006). The Aurora kinase inhibitor VX-680 induces endoreduplication and apoptosis preferentially in cells with compromised p53-dependent postmitotic checkpoint function. Cancer research, 66(15), 7668-7677.
[130] Dar, A. A., Belkhiri, A., Ecsedy, J., Zaika, A., & El-Rifai, W. (2008). Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer research, 68(21), 8998-9004.
[131] Brewer Savannah, K. J., Demicco, E. G., Lusby, K., Ghadimi, M. P., Belousov, R., Young, E., Zhang, Y., Huang, K. L., Lazar, A. J., Hunt, K. K., Pollock, R. E., Creighton, C. J., Anderson, M. L., & Lev, D. (2012). Dual targeting of mTOR and aurora-A kinase for the treatment of uterine Leiomyosarcoma. Clin Cancer Res, 18(17), 4633-4645.
[132] Chen, H. Y., & White, E. (2011). Role of autophagy in cancer prevention. Cancer Prev Res (Phila), 4(7), 973-983.
[133] Tait, S. W., & Green, D. R. (2010). Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol, 11(9), 621-632.
[134] Hardie, D. G., Ross, F. A., & Hawley, S. A. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 13(4), 251-262. doi: 10.1038/nrm3311
[135] Mihaylova, M. M., Sabatini, D. M., & Yilmaz, O. H. (2014). Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell, 14(3), 292-305.
[136] Roberts, P. J., & Der, C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22), 3291-3310.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57538-
dc.description.abstractDihydrodenbinobin為對天然抗癌活性物質denbinobin做結構修飾之全合成衍生物,能夠抑制賀爾蒙不依賴型前列腺癌PC-3細胞株的生長,利用SRB assay測定其GI50濃度為3.45 μM。使用流式細胞儀分析細胞內DNA含量,發現dihydrodenbinobin隨時間與濃度增加可顯著的增加sub-G1細胞的數量,但沒有觀察到細胞週期停滯。透過JC-1染劑測量粒線體之膜電位,發現JC-1之綠色螢光單體形式增加,表示有粒線體損傷之情形。接著利用西方墨點法觀察細胞內蛋白質的表現情形,發現AMPK在Thr172的磷酸化增加、其下游之蛋白如p70S6KThr389、p70S6KThr421/Ser424、4E-BP1Thr37/46磷酸化降低以及eIF4ESer209之磷酸化增加,mTOR之磷酸化表現則不受影響。值得注意的是,dihydrodenbinobin引起之AMPK活化,並不是透過上游激酶LKB1及CaMkkβ所影響,有可能是直接透過ATP的減少所調控。另外,加藥處理所造成之細胞死亡可以被p38 MAPK抑制劑SB203580所抑制,表示p38 MAPK在dihydrodenbinobin造成的細胞死亡中扮演了重要的角色。使用DCFH-DA染劑發現dihydrodenbinobin可在短時間內使活性氧物質 (ROS) 增加;抗氧化劑N-acetyl-L-cysteine亦可有效抑制dihydrodenbinobin引起之細胞死亡與蛋白質表現情形。利用kinase assay與西方墨點法皆可發現dihydrodenbinobin具有抑制Aurora A kinase之活性。總結來說,dihydrodenbinobin可透過活化AMPK、p38 MAPK與抑制Aurora A的活性,導致PC-3前列腺癌細胞的死亡。zh_TW
dc.description.abstractDihydrodenbinobin, a total synthetic compound through structural modification of the naturally occurring anti-cancer agent denbinobin, was effective against the androgen-independent prostate cancer PC-3 cells, with a concentration at 50% inhibition of proliferation (GI50) value of 3.45 μM measured by sulforhodamine B assay. The flow cytometric analysis of DNA content revealed that dihydrodenbinobin significantly increased the sub-G1 population of PC-3 cells in a time- and concentration-dependent manner without any effect on phase arrest of the cell cycle. JC-1 dye was used to measure mitochondrial membrane potential in this study. The data demonstrated that an increase of JC-1 monomers (green fluorescence) was detected indicating mitochondrial damages. Dihydrodenbinobin induced the phosphorylation of AMP-activated protein kinase (AMPK) at Thr172, and the downstream proteins were also affected, including decreased p70S6K phosphorylation at Thr389 and Thr421/Ser424, 4E-BP1 phosphorylation at Thr37/46 and increased eIF4E phosphorylation at Ser209, though mTOR activity was not modified after digydrodenbinobin treatment. Notably, neither the AMPK upstream kinase LKB1 was affected by dihydrodenbinobin nor CaMkkβ inhibitor STO609 rescued the modified downstream signals. The activation of AMPK might result from the reduction of ATP level in cell. In addition, the cell death caused by dihydrodenbinobin was completely blocked by SB203580, an inhibitor of the p38 MAPK, indicating the important role of p38 MAPK. A short-term increase of reactive oxygen species (ROS) generation was also detected in the exposure to dihydrodenbinobin, while antioxidant N-acetyl-L-cysteine can reverse cell death as well as protein expressions. Moreover, both kinase assay and Western blotting showed that dihydrodenbinobin displayed an inhibitory activity against Aurora A. In summary, the data suggest that dihydrodenbinobin induces anticancer activity through the activation of AMPK and p38 MAPK. The anti-Aurora A activity may also contribute to dihydrodenbinobin -mediated apoptotic mechanism in prostate cancer cellsen
dc.description.provenanceMade available in DSpace on 2021-06-16T06:50:31Z (GMT). No. of bitstreams: 1
ntu-103-R01423011-1.pdf: 1270974 bytes, checksum: 76105de454fbae85dba9d3ea0b257387 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
縮寫表 ii
中文摘要 iii
英文摘要 iv
目次 v
研究動機 1
文獻回顧 2
前列腺癌 (Prostate cancer) 2
前列腺癌細胞株 4
Denbinobin 4
細胞死亡 (Cell death) 5
細胞凋亡 7
氧化性壓力 (Oxidative stress) 10
Aurora激酶 (Aurora kinase) 11
AMP-activated protein kinase (AMPK) 12
Mammalian target of rapamycin (mTOR) 12
Mitogen-activated protein kinases (MAPKs):p38 13
實驗材料與方法 15
實驗結果 22
Dihydrodenbinobin對前列腺癌細胞株之生長抑制情形與對細胞週期的影響 22
Dihydrodenbinobin對粒線體膜電位的影響 22
Dihydrodenbinobin對Bcl-2家族相關蛋白與Mcl-1蛋白的影響 23
Dihydrodenbinobin對細胞凋亡相關蛋白的影響 23
Dihydrodenbinobin對抗凋亡IAP蛋白家族的影響 24
Dihydrodenbinobin對AMPK及其下游mTOR訊息傳導路徑的影響 24
Dihydrodenbinobin對AMPK上游激酶的影響 24
Dihydrodenbinobin對p38 MAPK的影響 25
Dihydrodenbinobin對活性氧化物 (ROS) 的影響 25
Dihydrodenbinobin對Aurora A kinase的影響 26
Dihydrodenbinobin對autophagy的影響 26
實驗討論 28
Dihydrodenbinobin對細胞凋亡的影響 28
Dihydrodenbinobin對AMPK與mTOR的影響 31
Dihydrodenbinobin對ROS與p38 MAPK的影響 33
Dihydrodenbinobin與Aurora kinase A 34
結論 37
圖表 38
參考文獻 64
dc.language.isozh-TW
dc.subjectAMPKzh_TW
dc.subjectp70S6Kzh_TW
dc.subjectp38 MAPKzh_TW
dc.subjectROSzh_TW
dc.subjectAurora Azh_TW
dc.titleDihydrodenbinobin在人類賀爾蒙不依賴型前列腺癌細胞之抗癌作用機轉探討zh_TW
dc.titleStudy of Anticancer Mechanism of Dihydrodenbinobin against Human Hormone-Refractory Metastatic Prostate Cancersen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭哲志,黃聰龍,潘秀玲
dc.subject.keywordAMPK,p70S6K,p38 MAPK,ROS,Aurora A,zh_TW
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2014-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved