Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56647
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成
dc.contributor.authorChieh-Ting Chenen
dc.contributor.author陳玠廷zh_TW
dc.date.accessioned2021-06-16T05:39:47Z-
dc.date.available2014-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citationAlbertsson, A. C.; Karlsson, S. (1994) Chemistry and Technology of Biodegradable Polymers, Blackie, Glasgow, p. 48
Bataille, I.; Meddahi-Pelle, A.; Visage, C. L.; Letourneur, D.; Chaubet, F. (2011) In Polysaccharides in Medicinal and Pharmaceutical Application; Valentin Popa, Ed.; iSmithers Rapra Publishing; Chapter 4, p 145.
Bauer, R. (1938) Physiology of Dematium pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt2, 98:133 – 167
Bermejo, J. M.; Dominguez, J. B.; Goni, F. M.; Uruburu, F. (1981) Influence of pH on the transition from yeast-like cells to chlamydospores in Aureobasidium pullulans. Antonie van Leeuwenhoek, 47:385-392
Biliaderis C. G.; Kristo, E. (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohyd Polym, 68:146–58.
Biliaderis, C. G.; Lazaridou, A. (2002) Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohyd Polym, 48:179–90.
Biliaderis, C. G.; Kristo, E.; Zampraka, A. (2007) Water vapour barrier and tensile properties of composite caseinate–pullulan films: biopolymer composition effects and impact of beeswax lamination. Food Chem , 101:753–64.
Borchard, W and Steinbrecht, U. (1991) Theory of swelling of a crosslinked substance in equilibrium with a solvent in various phases. Colloid & Polymer Science. 269:95-104.
Campbell, B.S.; Siddique, A.B.M.; McDougall, B.M.; Seviour R.J. (2004) Which morphological forms of the fungus Aureobasidium pullulans are responsible for pullulan production? FEMS Microbiol Lett, 232:225-228
Catley BJ (1970) Pullulan, a relationship between molecular weight and fine structure. FEBS Lett 10:190–193
Catley, B. J.; (1971) Role of pH and nitrogen limitation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Appl. Microbiol. 22:650-654
Catley, B. J.; McDowell, W. (1982) Lipid-linked saccharides formed during pullulan biosynthesis in Aureobasidium. Carbohydr Res, 103:65-75
Cha, D. S. and Chinnan, M. S. (2004) Biopolymer-based antimicrobial packaging: a review, Critical Reviews in Food Science and Nutrition, 44:223–237
Chabasse, D. (2002) Phaeohyphomycetes agents of phaeohyphomycosis: emerging fungi. J Mycol Med. 12:65-85
Cheng, K. C.; Demirci, A; Catchmark, J. M. (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol, 92:29 – 44
Cheng, K. C.; Demirci, A; Catchmark, J. M. (2011a) Continuous pullulan fermentation in biofilm reactor by Aureobasidium pullulans. Appl Microbiol Biotechnol, 90:921-927
Cheng K. C.; Demirci, A.; Catchmark, M. J. (2011b) Evaluation of medium composition and cultivation parameters on pullulan production by Aureobasidium pullulans. Food Sci Technol Int, 17:99-09
Chiou, B.-S.; Avena-Bustillos, R. J.; Bechtel, P. J.; Jafri, H.; Narayan, R.; Imam S. H.; Glenn, G. M.; Orts, W. J. (2008) Cold water fish gelatin films: effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. European Polymer Journal, 44:3748-3753
Cuq, B.; Gontard, N.; Cuq, J-L.; Guilbert, S. (1997) Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers. J. Agric. Food Chem., 45:622-626
Dais, P. (1995) In Fifth International Conference on the Spectroscopy of Biological Molecules; Theophanides, T.; Anastassopoulo J.; Fotopoulos N., Eds.; Kluwer, Dordrecht; p 217.
Dais, P.; Vlachou, S.; Taravel, F. (2001) 13C Nuclear magnetic relaxation study of segmental dynamics of the heteropolysaccharide pullulan in dilute solutions Biomacromolecules, 2, 1137.
Deshpande, M. S., Rale, V. B., Lynch, J. M. (1992) Aureobasidium pullulans in applied microbiology: a status report, Enzyme and Microbial Technology, 14:514-527
Duan, X. H.; Chi, Z. M.; Wang, L.; Wang, X. H. (2008) Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym, 73:587-593
Engles, T. A. P. (2009) Predicting performance of glassy polymers. Ph.D. thesis, Eindhoven University of Technology, URL http://mate.tue.nl/mate/pdfs/9719.pdf
Figueiredo, K. C. S.; Alves, T. L. M.; Borges, C. P. (2008) Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J. Appl. Polymer Sci. 111:3074-3080.
Fundueanu, G.; Constantin, M.; Oanea, I. (2012) Entrapment and release of drugs by a strict “on-off” mechanism in pullulan microspheres with pendant thermosensitive groups. Biomaterials 31: 9544-9553
Fujioka-Kobayashi, M.; Ota, M. S.; Shimoda, A. (2012) Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials (In press)
Fox, T. G.; Flory, P. J. (1950) Second-order transition temperatures and related properties of polystyrene. J. Appl. Phys. 21, 581
Galietta, G.; Gioia, L. D.; Guilbert; S.; Cuq, B. (1997) Mechanical and thermomechanical properties of films based on whey proteins as affected by plasticizer and crosslinking agents. J. Dairy Sci., 81:3123–3130
Gao, W.; Kim, Y. J.; Chung, C. H.; Li, J.; Lee, J. W. (2010) Optimization of mineral salts in medium for enhanced production of pullulan by morphic fungus Aureobasidium pullulans. Carbohydr Polym, 32:307-314
Guo, R.; Hu, C.; Li, B.; Jiang, Z. (2007) Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: Coupling effect and separation performance analysis. Journal of Membrane Science, 289, 191-198
Gibson, L. H.; Coughlin, R. W.; (2002) Optimization of high molecular weight pullulan production by Aureobasidium pullulans in batch fermentations. Biotechnol Progress, 18:675-678
Guilbert, S., Gontard, N., Cuq, B. (1995) Technology and applications of edible protective films, Packaging technology and science, 8:339-346
Gurtner G.C.; Wong V. W.; Rustad, K,C,; Galvez, M.G.; Neofyotou, E.; Glotzbach J. P. (2011) Engineered pullulan–collagen composite dermal hydrogels improve early cutaneous wound healing. Tissue Eng,17:631–44.
Heald, P.J.; Kristiansen, B. (1985) Synthesis of polysaccharide by yeast-like forms of Aureobasidium pullulans. Biotechnol Bioeng, 27:1516 – 1519
Hernandez-Munoz, P.; Villalobos, R.; Chiralt, A. (2004) Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocolloids, 18:403-411
Hernandez-Munoz, P.; Lopez-Rubio, A.; Lagaron, J. M.; Gavara, R. (2004) Formaldehyde cross-linking of gliadin films: effects on mechanical and water barrier properties. Biomacromolecules, 5:415-421
Hijiya, H., & Shiosaka, M. (1975a). Adhesives and pastes. US Patent Office, Pat. No. 3 873 333.
Kumar, A. S., Mody, K., Jha, B. (2007) Bacterial exopolysaccharides – a perception, Journal of Basic Microbiology, 47:103–117
Labuza T. P.; Breene W. M. (1989) Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J Food Proc Preserv, 13:1-69.
Lacroix, C.; LeDuy, A.; Noel, G.; Choplin, L. (1985) Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol Bioeng 27:202-207
Lazaridou, A.; Biliaderis, C. G.; Roukas, T.; Izydorczyk, M. (2002) Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture. App. Biochem. and biotech., 97:1-22
Lazaridou, A.; Biliaderis, C. G.; Kontogiorgos, V. (2003) Molecular weight effects on solution rheology of pullulan and mechanical properties of its films. Carbohydr Polym, 151-166
Lazaridou, A.; Roukas, T.; Biliaderis, C. G.; Vaikousi, H. (2002) Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology, 31, 122–132
Leathers, T. D. (2003) Biotechnological production and applications of pullulan, Applied microbiology and biotechnology, 62:468–473
Leathers, T. D.; Gupta, S. C.; (1994) Production of pullulan from fuel ethanol byproducts by Aureobasidium sp. strain NRRL Y-12974. Biotechnol Lett 16:1163-1166
Li, B. X.; Zhang, N.; Peng, Q.; Yin, T.; Guan, F. F.; Wang, G. L.; Li, Y. (2009) Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl Microbiol Biotechnol, 84:293-300
Lim, L.-T.; Mine, Y.; Tung, M. A. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. J. Food Sci., 64: 616-622
Jin, J.; Song, M.; Hourston. D. J. (2004) Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules, 5, 162-168
Igarashi, T., Nomura, K., Naito, K., & Yoshida, M. (1983). Plasma extenders. US Patent Office, Pat. No. 4 370 472.
Islam, M. S.; Akter, N.; Karim, M. R. (2010) Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized pullulan. Colloids Surf., A, 362:117-120.
Kachhawa, D. K.; Bhattacharjee, P.; Singhal, R. S. (2003) Studies on downstream processing of pullulan. Carbohydr Polym, 52, 25–28
Khademhosseini, A.; Bae, H.; Ahari, A. F.; Shin, H.; Nichol, J. W.; Hutson, C. B. (2011) Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation. Soft Matter, 7:1903–11.
Kulicke, W. M. and Heinze, T. (2006). Improvements in polysaccharides for use as blood plasma expanders. Macromolecular Symposia, 231, 47–59.
Madi, N. S.; McNeil, B; Harvey, L. M. (1996) Influence of culture dh and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J. Chem. Tech. Biotechnol, 66, 343-350
Mansur, H. S.; Sadahira, M.; Souza, A. N.; Mansur, A. A. P. (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C, 28:539-548
Marmur, A. (2004) The lotus effect: superhydrophobicity and metastability. Langmuir, 20: 3519-3519
Miller, G. L. (1959) Use of DNS reagent for determination of reducing sugar. Anal Chem, 31:426 – 428
Miller, K. S.; Krochta, J. M. (1997) Oxygen and aroma barrier properties of edible films: A review. Trends in Food Sci. Tech. 8: 228-237
Mocanu, G.; Mihai, D.; Dulong, V. (2012) New anionic crosslinked multi-responsive pullulan hydrogels. Carbohydr Polym 87:1440-1446
Nelson, D.L. and Cox, M.M. (2008) Principle of biochemistry, 5th edn, W.H. Freeman and Company, NY, USA.
Nishinari, K., Kohyama, K., Williams, P. A., Phillips, G. O., Burchard, W., Oginol, K., (1991) Solution Properties of Pullulan, Macromolecules, 24: 5590-5593
Oku, T.; Yamada, K.; Hosoya, N. (1979) Effect of pullulan and cellulose on the gastrointestinal tract of rats. Nutr Food Sci, 32:235-241
Omidian, H.; Hasherni, S. A.; Askari, F.; Nafisi, S.; (1994) Swelling and crosslink density measurements for hydrogels. Iranian J. of Polymer Science and Technology. 3:115-119.
Ou, S.; Wang, Y.; Tang, S.; Huang, C.; Jackson, M. G. (2005). Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering, 70:205-210.
Pavlath, A. E.; Gossett, C.; Camirand, W.; Robertson, G. H. (1999) Ionomeric films of alginic acid. J. Food Sci. 64: 61-63
Prasongsuk, S; Berhow, M. A.; Dunlap, C. A.; Weisleder, D; Leathers, T. D.; Eveleigh, D. E.; Punnapayak, H. (2007) Pullulan production by tropical isolates of Aureobasidium pullulans. J. Ind. Microbiol. Biotechnol. 34:55-61.
Ravve, A. (2010) Principles of polymer chemistry, 3rd edn. Springer, IL, USA
Reddy, N.; Yang, Yiqi. (2010) Citric acid cross-linking of starch films. Food Chemistry, 118: 702 -711
Rekha, M. R.; Sharma, C. P. (2011) Hemocompatible pullulan–polyethyleneimine conjugates for liver cell gene delivery: In vitro evaluation of cellular uptake, intracellular trafficking and transfection efficiency. Acta Biomater 7:370-379
Pelissari, F. M.; Grossmann, M. V. E.; Yamashita, F.; Pineda, E. A. G. (2009) Antimicrobial, mechanical, and barrier properties of cassava starch - chitosan films incorporated with oregano essential oil. J. Agric. Food Chem. 57: 7499-7504
Pereda, M; Aranguren, M. I.; Marcovich, N. E. (2010) Effect of crosslinking on the properties of sodium caseinate films. J. Appl. Polymer Sci. 116: 18-26
Ronen, M; Guterman, H; Shabtai, Y. (2002) Monitoring and control of pullulan production using vision sensor. J Biochem Biophys Methods, 3:243 – 249
Roukas, T. C. (1999) Pullulan production from brewery wastes by Aureobasidium pullulans. World J Microbiol Biotechnol, 15:447-450
Scott, R., Cade, D., & He, X. (2005). Pullulan film compositions. US Patent Office, Pat. No. 6 887 307.
Singh, Ram S.; Saini, Gaganpreet K.; Kennedy, John F. Pullulan: Microbial sources, production and applications. Carbohydrate Polymers, 73: 515–531
Simon, L; Bouchet, B; Bremond, K; Gallant, D.J., Bouchonneau, M. Studies on pullulan extracellular production and glycogen intracellular content in Aureobasidium pullulans. Can. J. Microbiol. 44: 1193–1199
Singh, R. S.; Saini G. K.; (2007) Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour Technol, 99:3896 – 3899
Siripatrawan, U.; Harte, B. R. (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24: 770-775.
Sionkowska, A.; Kaczmarek, H.; Wisniewski, M.; Skopinska, J.; Lazare, S.; Tokarev, V. (2006) The influence of UV irradiation on the surface of chitosan films. Surface Science, 600: 3775-3779
Shi, K.; Kokini, J. L.; Huang, Q. (2009) Engineering zein films with controlled surface morphology and hydrophilicity. J. Agric. Food Chem. 57:2186-2192
Shibata, M., Nozawa, R., Teramoto, N., Yosomiya, R. (2002) Synthesis and properties of etherified pullulans, European Polymer Journal, 38:497–501
Sookne, A. M.; Harris, M. (1945) Polymolecularity and mechanical properties of cellulose acetate. Ind. Eng. Chem. 37:478-482
Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S. W. (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of food science, 68: 408-420
Sutherland, I. W. (1998). Novel and established applications of microbial polysaccharides. Trends in Biotechnology, 16: 41–46.
Tang, C.-H.; Jiang, Y.; Wen, Q.-B.; Yang, X.-Q. (2005) Effect of transglutaminase treatment on the properties of cast films of soy protein isolates. Journal of Biotechnology, 120:296-307
Tang, X.; Alavi, S.; Herald, T. J. (2008) Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydrate Polymers, 74: 552-558
Teramoto, N.; Saitoh, M.; Kuroiwa, J.; Shibata, M.; Yosomiya, R. (2001) Morphology and mechanical properties of pullulan/poly(vinyl alcohol) blends crosslinked with glyoxal. J Appl Polym Sci,82:2273–80.
Teramoto, N. and Shibata, M. (2006) Synthesis and properties of pullulan acetate. thermal properties, biodegradability, and a semi-clear gel formation in organic solvents, Carbohydrate Polymers, 63:476–481
Thomas, D. P. and Hagan, R. S. (1969) The influence of molecular weight distribution on melt viscosity, melt elasticity, processing behavior and properties of polystyrene. Polymer Engineering & Science, 9:164-171
Trinetta, V.; Cutter, C. N.; Floros, J. D. (2011) Effects of ingredient composition on optical and mechanical properties of pullulan film for food-packaging applications. Food Sci. Technol.-Leb. 44, 2296 –2301
Trovatti, E.; Fernandes, S. C. M.; Rubatat, L.t; Freire C. S. R.; Silvestre, A. J. D.; Neto, C. P. (2012) Sustainable nanocomposite films based on bacterial cellulose and pullulan. Cellulose, 19:729–737
Vieira, R. S.; Beppu, M. M. (2006) Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 279: 196-207
Vu, B., Chen, M., Crawford, R. J., Ivanova, P. (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14, 2535-2554
Wiley, B. J.; Ball, D. H.; Arcidiacono, S. M.; Sousa, S.; Mayer, J. M.; Kaplan, D. L. (1993) Control of molecular weight distribution of the biopolyrner pullulan produced by Aureobasidium pullulans. Journal of Environmental Polymer Degradation, 1: 3-9
Wong, V. W.; Rustad, K. C.; Glotzbach, J. P. (2011) Pullulan hydrogels improve mesenchymal stem cell delivery into high-oxidative-stress wounds. Macromol. Biosci, 11:1458-1466
Wu, J.; Zhong, F.; Li, Y.; Shoemaker, C. F.; Xia, W. (2013) Preparation and characterization of pullulan-chitosan and pullulan-carboxymethyl chitosan blended films. Food Hydrocolloids, 30:82-91
Wu, S.; Jin, Z.; Kim, J. M.; Tong, Q.; Chen, H. (2009) Downstream processing of pullulan from fermentation broth, Carbohydrate Polymers, 77:750–753
Wu, S., Jin, Z., Kim, J. M., Tong, Q., Chen, H. (2009) Sweet potato: a novel substrate for pullulan production by Aureobasidium pullulans. Carbohydrate Polymers, 77:750-753
Yang, C. Q.; Wang, X.; Kang, I. (1997). Ester cross-linking of cotton fabric by polymeric carboxylic acids and citric acid. Textile Research Journal, 67: 334–342.
Yang, Y.; Wang, L.; Li, S. J. (1996). Formaldehyde-free zein fiber-preparation and investigation. Journal of Applied Polymer Science, 59: 433–441.
Yi, J. B.; Kim, Y. T.; Bae, H. J.; Whiteside, W. S.; Park, H. J. (2006) Influence of transglutaminase-induced cross-linking on properties of fish gelatin films. J. Food Sci. 71: 376-383
Yuen, S. (1974) Pullulan and its applications. Process Biochem 9:7-9
Zhai, M.; Zhao, L.; Yoshii, F.; Kume, T. (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57: 83-88
Zhou, J.; Zhang, J.; Ma, Y.; Tong, J. (2008) Surface photo-crosslinking of corn starch sheets. Carbohydrate Polymer, 74, 405-410
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56647-
dc.description.abstract普魯藍是由黑酵母菌 (Aureobasidium pullulans) 所生產的胞外多醣,以麥芽三糖為單元透過α-1,6鍵結組成線性結構。純化過後的普魯藍能夠以鑄模法或熱擠壓法製成薄膜,具有透明、無毒和生物可分解的性質,並提供良好的機械性質與氣體阻隔性,可做為食品包材的選擇,惟普魯藍薄膜易溶於水的特性導致其在包裝上的應用受限。本研究利用戊二醛作為交聯劑,能夠以較溫和的反應條件與普魯藍分子上的羥基反應形成縮醛的化學鍵結,藉此加強薄膜的耐水性與物理性質,並配合醱酵高分子量普魯藍與塑化劑添加分析這些因子對於薄膜的影響。以不同交聯劑濃度處理以觀察薄膜性質之變化並利用傅立葉轉換紅外線光譜分析結構,結果顯示當交聯劑與普魯藍重量比例達0.01g/g時便可使薄膜耐水性顯著提升,並且隨著提高交聯劑濃度能夠進一步提升耐水性,此外提高交聯劑濃度的同時也抑制了薄膜吸水的程度,顯示交聯鍵結確實形成,這些現象可由FT-IR圖譜中O-H振動吸收波峰 (3300 cm-1) 強度減弱獲得印證。在低交聯劑濃度 (0.005-0.015, g/g) 時,薄膜機械強度隨之增加,然而,交聯劑濃度高於 0.025 (g/g) 以上時,機械強度反而降低,此時薄膜過於硬脆不利於使用。醱酵普魯量分子量為2,570 kDa,大於商業生產普魯藍分子量,實驗結果發現以高分子量普製膜可以在各項性質中獲得較好的表現,例如較好的機械強度以及較佳的水氣阻隔能力;添加甘油於薄膜中可有效提升薄膜的延展性,卻也增加了薄膜的親水性。而甘油的添加會干擾低濃度交聯劑的反應,因此未來可針對交聯劑與甘油的比例進行最適化的調整,以實際應用於食品包裝上。zh_TW
dc.description.abstractPullulan is an extracellular polysaccharide originated from Aureobasidium pullulans. The linear structure of pullulan consist of maltotrioses with α-1,6 glycosidic linkages. The purified pullulan films formed by casting or extruding methods possess several advantages including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, which are preferable features for packaging of food. However, the applications of pullulan films on packaging are limited due to its high solubility in water. In this study, glutaraldehyde was used as cross-linking reagent to improve the water resistance and physical properties of pullulan film. It reacts with the hydroxyl group on pullulan under mild reaction condition, forming acetal linkages between molecules of pullulan. The glycerol as plasticizer and high molecular weight fermented pullulan previously investigated in our lab, were also applied in this study to evaluate their functions and mechanisms in film forming. Effects of cross-linking reagent with different concentration on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were determined, and the chemical structure of cross-linked pullulan film were also analyzed by Fourier transform infrared spectroscopy (FT-IR). When the ratio of crosslinking reagent to pullulan reaches 0.01 g/g, the water resistance was improved significantly. Better resistance to water and less swelling degree were observed when crosslinking reagent increased. The decreasing O-H stretching vibration (3300 cm-1) of films in FT-IR spectra indicate a higher degree of crosslinking was formed with increasing concentration of crosslinking reagent. The mechanical properties increased at 0.005-0.015 g/g of glutaraldehyde per gram of pullulan, and start to decrease when higher than 0.025 g/g of glutaraldehyde per gram of pullulan was used. However, the fragile property in films with high degree of cross-linking is unfavorable for industrial uses. In addition, the fermented pullulan possesses a high molecular weight of 2,570 kDa, which is much higher than commercial pullulan, and it exerts better performance in all properties we had tested. The addition of glycerol as plasticizer enhanced the extensibility of films as well as the hydrophilicty, resulting in higher water vapor permeability. It might be attributed from the disturbance of crosslinking. In summary, the crosslinking strategy effectively increase the weakness of pullulan films, yet needs futher studies such as optimization of the ratio of crosslinking reagent/glycerol for future application on food packaging.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:39:47Z (GMT). No. of bitstreams: 1
ntu-103-R01641044-1.pdf: 3736719 bytes, checksum: b9ad8c767a60974700517925597e161b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 I
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
壹、前言 1
貳、文獻回顧 2
2.1食品包裝概況 2
2.2生物可分解薄膜 3
2.2.1脂肪膜 4
2.2.2蛋白質膜 4
2.2.3多醣膜 6
2.3普魯藍多醣 11
2.3.1普魯藍之分子結構 11
2.3.2普魯藍之基本性質 12
2.3.3普魯藍之醱酵生產 13
2.4普魯藍薄膜 19
2.4.1普魯藍可食膜 19
2.4.2普魯藍活性包裝 23
2.4.3普魯藍的化學性修飾 25
2.5交聯反應 28
2.5.1交聯對於聚合物之影響 31
2.6塑化劑 32
2.6.1塑化原理 33
2.6.2生物性聚合物常用塑化劑 33
参、材料與方法 36
3.1醱酵菌株 36
3.2醱酵基質 36
3.3多糖分離純化溶劑 36
3.4薄膜製備原料 36
3.5儀器設備 37
3.6實驗架構 38
3.7 實驗目的 39
3.8菌株保存 39
3.9醱酵方法 39
3.10普魯藍之回收 40
3.11普魯藍之純化 41
3.12普魯藍分子量分析 42
3.13薄膜製備 42
3.14表面分析及斷面分析 43
3.15傅立葉轉換紅外線光譜 43
3.16薄膜溶解度 43
3.17薄膜溶脹程度 44
3.18機械性質 44
3.19薄膜水份含量 45
3.20水氣穿透率 45
3.21接觸角 45
3.22不透光度 46
肆、結果與討論 47
4.1分子量分布 47
4.2交聯劑濃度對薄膜性質之影響 50
4.2.1交聯薄膜之溶解度 50
4.2.2交聯薄膜之溶脹度 52
4.2.3交聯薄膜之水分含量 54
4.2.4交聯薄膜之機械性質 56
4.2.5傅立葉紅外線光譜分析 58
4.3普魯藍分子量分布差異與塑化劑添加對交聯薄膜之影響 66
4.3.1傅立葉紅外線光譜之差異 66
4.3.2機械性質分析 68
4.3.3顯微結構 73
4.3.4薄膜親水性分析 83
4.3.4.2水氣穿透率 88
4.3.4.3接觸角分析 91
4.3.4.4不透光度分析 94
伍、結論與展望 96
陸、參考文獻 98
dc.language.isozh-TW
dc.title利用交聯化改良普魯藍薄膜之物理特性zh_TW
dc.titleImprovement on physical properties of pullula n films by cross-linkingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor蔣欣翰
dc.contributor.oralexamcommittee葉安義,羅翊禎,許庭禎
dc.subject.keyword戊二醛,甘油,縮醛,機械性質,水氣穿透率,zh_TW
dc.subject.keywordglutaraldehyde,glycerol,acetal,mechanical properties,water vapor permeability,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2014-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved