Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56335
Title: k-Truss 分解之分散式演算法
Distributed Algorithms for k-Truss Decomposition
Authors: Pei-Ling Chen
陳姵伶
Advisor: 陳銘憲(Ming-Syan Chen)
Keyword: k叢集,平行運算,社群網路,大數據,
k-truss,parallel computing,social network,big data,
Publication Year : 2014
Degree: 碩士
Abstract: k-truss 是一種可以代表一個網路凝聚力大小的子圖,是在分析一個
社群網路的重要指標。然而,隨著巨量社群網路的出現,其構成的圖
會擁有百萬甚至上億個節點和邊,這導致k-truss 傳統單機版演算法所
需要的運算時間將會超乎想像的久;除此之外,如此大型的圖會無法
載入單一機器的記憶體,這也是另一個傳統演算法無法運作的原因。
目前,大資料的運算已經迫切的仰賴雲端運算,因此我們的目標是基
於雲端運算的框架上,設計出可以處理巨量資料的k-truss 演算法。在
本篇論文中,我們先就已經存在的MapReduce 版k-truss 演算法進行改
良。而由於MapReduce 的架構在處理分散式的圖運算時會因為太多的
迴圈而導致過多的IO 負載,我們轉而使用圖平行架構(graph-parallel
anstractions) ,且提出一系列的理論基礎來設計一個k-truss 平行化演
算法的版本。實驗的結果顯示,從運算時間以及硬碟使用量的觀點來
看,我們基於圖平行架構所提出的k-truss 平行化演算法比其他基於
MapReduce 設計的版本來的更有效率。
k-truss, a type of cohesive subgraphs of a network, is an important measure
for a social network graph. However, with the emergence of large online
social networks, the running time of the traditional batch algorithms for
k-truss decomposition is usually prohibitively long on such a graph with billions
of edges and millions of vertices. Moreover, the size of a graph becomes
too large to load into the main memory of a single machine. Currently, cloud
computing has become an imperative way to process the big data. Thus, our
aim is to design a scalable algorithm of k-truss decomposition in the scenario
of cloud computing. In this thesis, we first improve the existing distributed
k-truss decomposition in the MapReduce framework. We then propose a series
of theoretical basis for k-truss and use them to design an algorithm based
on graph-parallel abstractions. Our experiment results show that our method
in the graph-parallel abstraction significantly outperforms the methods based
on MapReduce in terms of running time and disk usage.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56335
Fulltext Rights: 有償授權
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
2.71 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved