Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55945
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌(Been-Huang Chiang)
dc.contributor.authorJia-Ying Linen
dc.contributor.author林佳瑩zh_TW
dc.date.accessioned2021-06-16T05:11:22Z-
dc.date.available2019-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citation詹玲、潘思軼。大豆糖蛋白的分離純化及結構分析。食品科學。2007,27,594-596。
陳俊亮、楊麗傑、霍貴成。益生菌降解大豆源 α-低聚糖和醛類物質的研究。食品與發酵工業。2008,34,20-23。
魏炳棟、陳群、劉海燕、於秀芳、邱玉朗。乳酸菌固態發酵對豆粕蛋白質含量,體外消化率及游離氨基酸含量的影響。飼料博覽。2010,3,3-5。
Abel, G.; Szollosi, J.; Chihara, G.; Fachet, J., Effect of lentinan and mannan on phagocytosis of fluorescent latex microbeads by mouse peritoneal macrophages: a flow cytometric study. International Journal of Immunopharmacology 1989, 11, 615-621.
Adinarayana, K.; Prabhakar, T.; Srinivasulu, V.; Anitha Rao, M.; Jhansi Lakshmi, P.; Ellaiah, P., Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum Process Biochemistry. 2003, 39, 171-177.
Amigo-Benavent, M.; Athanasopoulos, V. I.; Ferranti, P.; Villamiel, M.; del Castillo, M. D., Carbohydrate moieties on the in vitro immunoreactivity of soy β-conglycinin. Food Research International 2009, 42, 819-825.
Anderson, J. W.; Johnstone, B. M.; Cook-Newell, M. E., Meta-analysis of the effects of soy protein intake on serum lipids. New England Journal of Medicine 1995, 333, 276-282.
Anderson, J. W.; Smith, B. M.; Washnock, C. S., Cardiovascular and renal benefits of dry bean and soybean intake. The American Journal of Clinical Nutrition 1999, 70, 464-474.
Andre, G.; Moo‐Young, M.; Robinson, C. W., Improved method for the dynamic measurement of mass transfer coefficient for application to solid–substrate fermentation. Biotechnology and Bioengineering 1981, 23, 1611-1622.
A.O.A.C., Official methods of analysis. 16th Ed. Association of Official Analytical Chemists 1995.
Arfi, K.; Leclercq-Perlat, M. N.; Baucher, A.; Tache, R.; Delettre, J.; Bonnarme, P., Contribution of several cheese-ripening microbial associations to aroma compound production. Le Lait 2004, 84, 435-447.
Arjmandi, B. H.; Getlinger, M. J.; Goyal, N. V.; Alekel, L.; Hasler, C. M.; Juma, S.; Drum, M. L.; Hollis, B. W.; Kukreja, S. C., Role of soy protein with normal or reduced isoflavone content in reversing bone loss induced by ovarian hormone deficiency in rats. The American Journal of Clinical Nutrition 1998, 68, 1358-1363.
Bailey, J. E.; Ollis, D. F., Biochemical engineering fundamentals. Chemical Engineering Education 1976.
Beuchat, L. R., Microbial stability as affected by water activity. Cereal Foods World 1981, 26, 345-349.
Biron, C. A.; Nguyen, K. B.; Pien, G. C.; Cousens, L. P.; Salazar-Mather, T. P., Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual Review of Immunology 1999, 17, 189-220.
Bisson, L. F.; Coons, D. M.; Kruckeberg, A. L.; Lewis, D. A., Yeast sugar transporters. Critical Reviews in Biochemistry and Molecular Biology 1993, 28, 259-308.
Block, K. I.; Mead, M. N., Immune system effects of echinacea, ginseng, and astragalus: a review. Integrative Cancer Therapies 2003, 2, 247-267.
Bressani, R.; Elias, L. G., Processed vegetable protein mixtures for human consumption in developing countries. Advances in Food Research 1968, 16, 1.
Burke, V.; Hodgson, J. M.; Beilin, L. J.; Giangiulioi, N.; Rogers, P.; Puddey, I. B., Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensives. Hypertension 2001, 38, 821-826.
Burke, L. A.; Hallsworth, M. P.; Litchfield, T. M.; Davidson, R.; Lee, T. H., Identification of the major activity derived from cultured human peripheral blood mononuclear cells, which enhances eosinophil viability, as granulocyte macrophage colony-stimulating factor (GM-CSF). Journal of Allergy and Clinical Immunology 1991, 88, 226-235
Calder, P. C.; Kew, S., The immune system: a target for functional foods? British Journal of Nutrition 2002, 88, S165-S176.
Chou, C. C.; Hou, J. W., Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. International Journal of Food Microbiology 2000, 56, 113-121.
Chumchuere, S.; Robinson, R., Selection of starter cultures forthe fermentation of soya milk. Food Microbiology 1999, 16, 129-137.
Colucci, F.; Di Santo, J. P.; Leibson, P. J., Natural killer cell activation in mice and men: different triggers for similar weapons? Nature Immunology 2002, 3, 807-813.
De Freitas, I.; Pinon, N.; Maubois, J. L.; Lortal, S.; Thierry, A., The addition of a cocktail of yeast species to Cantalet cheese changes bacterial survival and enhances aroma compound formation. International Journal of Food Microbiology 2009, 129, 37-42.
Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P.; Smith, F., Colorimetric method for determination of sugars and related substances. Analytical Chemistry 1956, 28, 350-356.
Easo, J.; Measham, J.; Munroe, J.; Green-Johnson, J., Immunostimulatory actions of lactobacilli: mitogenic induction of antibody production and spleen cell proliferation by lactobacillus delbrueckii subsp. Bulgaricus and lactobacillus acidophilus. Food and Agricultural Immunology 2002, 14, 73-83.
Ferreira, A. D.; Viljoen, B. C., Yeasts as adjunct starters in matured Cheddar cheese. International Journal of Food Microbiology 2003, 86, 131-140.
Finger, S.; Hatch, R.; Regan, T., Aerobic microbial growth in semisolid matrices: Heat and mass transfer limitation. Biotechnology and Bioengineering 1976, 18, 1193-1218.
Fogler, W. E.; Volker, K.; McCormick, K. L.; Watanabe, M.; Ortaldo, J. R.; Wiltrout, R. H., NK cell infiltration into lung, liver, and subcutaneous B16 melanoma is mediated by VCAM-1/VLA-4 interaction. The Journal of Immunology 1996, 156, 4707-4714.
French, A. R.; Yokoyama, W. M., Natural killer cells and autoimmunity. Arthritis Research and Therapy 2004, 6, 8-18.
Gadaga, T. H.; Mutukumira, A. N.; Narvhus, J. A., The growth and interaction of yeasts and lactic acid bacteria isolated from Zimbabwean naturally fermented milk in UHT milk. International Journal of Food Microbiology 2001, 68, 21-32.
Gibbs, B. F.; Zougman, A.; Masse, R.; Mulligan, C., Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International 2004, 37, 123-131.
Gitzelmann, R.; Auricchio, S., The handling of soya alpha-galactosides by a normal and a galactosemic child. Pediatrics 1965, 36, 231-235.
Glas, R.; Franksson, L.; Une, C.; Eloranta, M.-L.; Ohlen, C.; Orn, A.; Karre, K., Recruitment and Activation of Natural Killer (Nk) Cells in Vivo Determined by the Target Cell Phenotype An Adaptive Component of Nk Cell–Mediated Responses. The Journal of Experimental Medicine 2000, 191, 129-138.
Gleeson, M., Introduction to the immune system. Immune Function in Sport and Exercise. Advances in Sport and Exercise Science Series 2006, 15-43.
Gobbetti, M.; Corsetti, A.; Rossi, J., The sourdough microflora. Interactions between lactic acid bacteria and yeasts: metabolism of amino acids. World Journal of Microbiology and Biotechnology 1994, 10, 275-279.
Haddad, P. S.; Azar, G. A.; Groom, S.; Boivin, M., Natural health products, modulation of immune function and prevention of chronic diseases. Evidence-Based Complementary and Alternative Medicine 2005, 2, 513-520.
Hou, J.-W.; Yu, R.-C.; Chou, C.-C., Changes in some components of soymilk during fermentation with bifidobacteria. Food Research International 2000, 33, 393-397.
Huong, N. T. T.; Murakami, Y.; Tohda, M.; Watanabe, H.; Matsumoto, K., Social isolation stress-induced oxidative damage in mouse brain and its modulation by majonoside-R2, a Vietnamese ginseng saponin. Biological and Pharmaceutical Bulletin 2005, 28, 1389-1393.
IKE, F.; KAMINOGAWA, S., Screening for the Immunopotentiating Activity of Food Microorganisms and Enhancement of the Immune Response by Bzfidobacterium adolescentis M101-4. Bioscience, Biotechnology, & Biochemistry 1993, 57, 2127-2132.
Jakobsen, M.; Narvhus, J., Yeasts and their possible beneficial and negative effects on the quality of dairy products. International Dairy Journal 1996, 6, 755-768.
Kanazawa, T.; Osanai, T.; Zhang, X. S.; Uemura, T.; Yin, X. Z.; Onodera, K.; Oike, Y.; Ohkubo, K., Protective effects of soy protein on the peroxidizability of lipoproteins in cerebrovascular diseases. The Journal of Nutrition 1995, 125, 639S-646S.
Kiho, T.; Shiose, Y.; Nagai, K.; Sakushima, M.; Ukai, S., Polysaccharides in fungi. XXIX. Structural features of two antitumor polysaccharides from the fruiting bodies of Armillariella tabescens. Chemical & Pharmaceutical Bulletin 1992, 40, 2212-2214.
Kino, K.; Yamashita, A.; Yamaoka, K.; Watanabe, J.; Tanaka, S.; Ko, K.; Shimizu, K.; Tsunoo, H., Isolation and characterization of a new immunomodulatory protein, ling zhi-8 (LZ-8), from Ganoderma lucidium. Journal of Biological Chemistry 1989, 264, 472-478.
Kudou, S.; Fleury, Y.; Welti, D.; Magnolato, D.; Uchida, T.; Kitamura, K.; OKUBO, K., Malonyl Isoflavone Glycosides in Soybean Seeds (Glycine max MERRILL)(Food & Nutrition). Agricultural and Biological Chemistry 1991, 55, 2227-2233.
Lai, M. N.; Wang, H. H.; Chang, F. W., Thermal diffusivity of solid mash of sorghum brewing—a solid state fermentation. Biotechnology and Bioengineering 1989, 34, 1337-1340.
Lam, M. P. Y.; Lau, E.; Liu, X.; Li, J.; Chu, I. K., 3.15 - Sample Preparation for Glycoproteins. In Comprehensive Sampling and Sample Preparation, Pawliszyn, J., Ed. Academic Press: Oxford, 2012; pp 307-322.
Lin, Y.; Meijer, G. W.; Vermeer, M. A.; Trautwein, E. A., Soy protein enhances the cholesterol-lowering effect of plant sterol esters in cholesterol-fed hamsters. The Journal of Nutrition 2004, 134, 143-148.
Liu, F.; Ooi, V.; Chang, S., Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences 1997, 60, 763-771.
Locatelli, F.; Pende, D.; Maccario, R.; Mingari, M. C.; Moretta, A.; Moretta, L., Haploidentical hemopoietic stem cell transplantation for the treatment of high-risk leukemias: How NK cells make the difference. Clinical Immunology 2009, 133, 171-178.
Masotti, A. I.; Buckley, N.; Champagne, C. P.; Green-Johnson, J., Immunomodulatory bioactivity of soy and milk ferments on monocyte and macrophage models. Food Research International 2011, 44, 2475-2481.
Messina, M. J., Legumes and soybeans: overview of their nutritional profiles and health effects. The American journal of clinical nutrition 1999, 70, 439s-450s.
Mital, B.; Steinkraus, K.; Naylor, H., Growth of lactic acid bacteria in soy milks. Journal of Food Science 1974, 39, 1018-1022.
Mudgett, R.; Bajracharya, R., Effects of controlled gas environments in microbial enhancement of plant protein recovery. Journal of Food Biochemistry 1980, 3, 135-150.
Novogrodsky, A.; Katchalski, E., Lymphocyte transformation induced by concanavalin A and its reversion by methyl-α-d-mannopyranoside. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis 1971, 228, 579-583.
O'Toole, D. K., SOYBEAN | Soy-Based Fermented Foods. In Encyclopedia of Grain Science, Wrigley, C., Ed. Elsevier: Oxford, 2004; pp 174-185.
Olden, K.; Parent, J. B.; White, S. L., Carbohydrate moieties of glycoproteins a re-evaluation of their function. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1982, 650, 209-232.
Pandey, A., Recent process developments in solid-state fermentation. Process Biochemistry 1992, 27, 109-117.
Pandey, A., Solid-state fermentation. Biochem. Eng. J. 2003, 13, 81-84.
Park, H. Y.; Yu, A. R.; Choi, I. W.; Hong, H. D.; Lee, K. W.; Choi, H. D., Immunostimulatory effects and characterization of a glycoprotein fraction from rice bran. International Immunopharmacology 2013, 17, 191-197.
Perdigon, G.; Alvarez, S.; Nader de Macias, M.; Margni, R.; Oliver, G., Lactobacilli administered orally induce release of enzymes from peritoneal macrophages in mice. Milchwissenschaft 1986.
Perdigon, G.; de Macias, M. E.; Alvarez, S.; Oliver, G.; de Ruiz Holgado, A. P., Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. Journal of Dairy Research 1990, 57, 255-264.
Pyo, Y.-H.; Lee, T.-C.; Lee, Y.-C., Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Research International 2005, 38, 551-559.
Ramana Murthy, M. V.; Karanth, N. G.; Raghava Rao, K. S. M. S., Biochemical Engineering Aspects of Solid-State Fermentation. Advances in Applied Microbiology, Saul, N.; Allen, I. L., Eds. Academic Press: 1993; Vol. Volume 38, pp 99-147.
Reynolds, T.; Dweck, A. C., Aloe vera leaf gel: a review update. Journal of Ethnopharmacology 1999, 68, 3-37.
Rycroft, C.; Jones, M.; Gibson, G.; Rastall, R., A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology 2001, 91, 878-887.
Samartı́n, S.; Chandra, R. K., Obesity, overnutrition and the immune system. Nutrition Research 2001, 21, 243-262.
Scalabrini, P.; Rossi, M.; Spettoli, P.; Matteuzzi, D., Characterization of Bifidobacterium strains for use in soymilk fermentation. International Journal of Food Microbiology 1998, 39, 213-219.
Schwartzberg, H., Contionuous countercurrent extraction the food-industry. Chemical Engineering Progress 1980, 76, 67-85.
Scrimshaw, N. S.; SanGiovanni, J. P., Synergism of nutrition, infection, and immunity: an overview. The American Journal of Clinical Nutrition 1997, 66, 464S-477S.
Sidhu, G.; Oakenfull, D., A mechanism for the hypocholesterolaemic activity of saponins. British Journal of Nutrition 1986, 55, 643-649.
Smyth, M. J.; Hayakawa, Y.; Takeda, K.; Yagita, H., New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Reviews Cancer 2002, 2, 850-861.
Song, Y. S.; Frias, J.; Martinez-Villaluenga, C.; Vidal-Valdeverde, C.; de Mejia, E. G., Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chemistry 2008a, 108, 571-581.
Song, Y. S.; Frias, J.; Martinez-Villaluenga, C.; Vidal-Valdeverde, C.; de Mejia, E. G., Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chemistry 2008b, 108, 571-581.
Soulides, D., A synergism between yoghurt bacteria and yeasts and the effect of their association upon the viability of the bacteria. Applied Microbiology 1955, 3, 129.
Stadie, J.; Gulitz, A.; Ehrmann, M. A.; Vogel, R. F., Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiology 2013, 35, 92-98.
Stick, R. V.; Williams, S. J., Chapter 11 - Glycoproteins and Proteoglycans. In Carbohydrates: The Essential Molecules of Life (Second Edition), Stick, R. V.; Williams, S. J., Eds. Elsevier: Oxford, 2009, pp 369-412.
Sumner, J. B., The estimation of sugar in diabetic urine, using dinitrosalicylic acid. Journal of Biological Chemistry 1924, 62, 287-290.
Tanaka, K.; Yamada, A.; Noda, K.; Hasegawa, T.; Okuda, M.; Shoyama, Y.; Nomoto, K., A novel glycoprotein obtained from Chlorella vulgaris strain CK22 shows antimetastatic immunopotentiation. Cancer Immunology, Immunotherapy 1998, 45, 313-320.
Tian, Z.; Gershwin, M. E.; Zhang, C., Regulatory NK cells in autoimmune disease. Journal of Autoimmunity 2012, 39, 206-215
Tsangalis, D.; Shah, N. P., Metabolism of oligosaccharides and aldehydes and production of organic acids in soymilk by probiotic bifidobacteria. International Journal of Food Science & Technology 2004, 39, 541-554.
USDA, U., National Nutrient Database for Standard Reference, Release 20. Agricultural Research Service, Washington DC, USA 2007.
Viljoen, B. C.; Analie, L. H.; Bridget, I.; Gabor, P., Temperature abuse initiating yeast growth in yoghurt. Food Research International 2003, 36, 193-197.
Vivier, E.; Nunes, J. A.; Vely, F., Natural killer cell signaling pathways. Science 2004, 306, 1517-1519.
Wallace, T. D.; Bradley, S.; Buckley, N. D.; Green-Johnson, J. M., Interactions of lactic acid bacteria with human intestinal epithelial cells: effects on cytokine production. Journal of Food Protection 2003, 66, 466-472.
Wang, Y. C.; Yu, R. C.; Chou, C. C., Growth and survival of bifidobacteria and lactic acid bacteria during the fermentation and storage of cultured soymilk drinks. Food Microbiology 2002, 19, 501-508.
Wang, Y. C.; Yu, R. C.; Yang, H. Y.; Chou, C. C., Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiology 2003, 20, 333-338.
Wiseman, A., Topics in enzyme and fermentation biotechnology. Ellis Horwood Ltd.: 1985; Vol. 10.
Wood, C.; Keeling, S.; Bradley, S.; Johnson-Green, P.; Green-Johnson, J. M., Interactions in the mucosal microenvironment: vasoactive intestinal peptide modulates the down-regulatory action of Lactobacillus rhamnosus on LPS-induced interleukin-8 production by intestinal epithelial cells. Microbial Ecology in Health and Disease 2007, 19, 191-200.
Zhang, J.; Wang, G.; Li, H.; Zhuang, C.; Mizuno, T.; Ito, H.; Mayuzumi, H.; Okamoto, H.; Li, J., Antitumor active protein-containing glycans from the Chinese mushroom songshan lingzhi, Ganoderma tsugae mycelium. Bioscience, Biotechnology, and Biochemistry 1994, 58, 1202.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55945-
dc.description.abstract自然殺手細胞為負責對抗病毒感染及腫瘤細胞的第一道防線,在免疫系統中扮演著關鍵的角色。近年來以飲食調節免疫功能為研究的一大趨勢,由天然來源分離出的醣蛋白被證實具有免疫調節的潛力。黃豆富含高量蛋白質且乳酸菌發酵黃豆產品已被證實具有免疫調節活性。然而,目前之發酵產品多以液態發酵方式生產為主。本研究則以黃豆粉為基質,以兩階段式固態發酵方式,先以 Saccharomyces cerevisiae 預發酵後,再接種 Lactobacillus acidophilus、Streptococcus thermophilus及Bifidobacterium infantis發酵,期望透過微生物發酵使基質產生微生物轉化作用,生成具有免疫調節活性之醣蛋白。
  首先探討不同水分含量黃豆粉中微生物生長情形,確定固態發酵之可行性。之後以 NK-92 MI 細胞為免疫調節活性測試平臺,探討不同水分含量、微生物預發酵時間及乳酸菌發酵時間等因素,對於細胞存活率之影響。實驗結果發現,以 60% 水分含量,黃豆粉經酵母菌預發酵一天後,再由乳酸菌發酵一天及三天之組別,對免疫功效提升之效果最佳,且具有此效果之生物活性成分可能為蛋白質。
  本實驗進一步以陰離子交換層析分離純化粗蛋白萃取液,發現經過發酵後蛋白質及醣組成有改變之情形,將區分物以 NK-92 MI 細胞測試其免疫調節活性,結果顯示,黃豆粉經酵母菌預發酵一天後,再由乳酸菌發酵一天及三天之組別,能顯著促進 NK-92 MI 細胞增生,並增加其毒殺 K-562 細胞之活性。
zh_TW
dc.description.abstractNatural killer cells play a vital role in immune system, which is the first line defence against viral infection and in preventing the development of cancers. To modulate immune function by diets has been a topic of interest to researchers in recent years. Glycoproteins isolated from natural sources have been proven to be an immunomodulatory potentiators. Soybean contains high quality protein, moreover, it has been reported that lactic acid bacteria fermented soy-based products possesses immunomodulatory activity. However, the soy-based products fermented by lactic acid bacteria were conducted majorly by submerged fermentation.
  In this study, we fermented soymeal by using two stage solid state fermentation. The soymeal inouculated Lactobacillus acidophilus, Streptococcus thermophilus and Bifidobacterium infantis after Saccharomyces cerevisiae pre-fermentation. We expected that the fermentation process could produce immunomodulatory glycoprotein due to bio-conversion of microorganism.
  The effect of soymeal with various moisture contents on microorganism growth was examined to evaluate feasibility of solid-state fermentation. In addition, the effect of various moisture contents, Saccharomyces cereviseae pre-fermentation time and lactic acid bacteria fermentation time on NK-92 MI cell viability were also be investigated. It was found that soymeal fermented by lactic acid bacteria for one and three days after yeast pre-fermentation for one day could promote NK-92 MI proliferation and cytotoxic activity of NK-92 MI cells against K562 cell. Furthermore, the bioactive compound is likely to be protein.
  The crude protein extract was fracrionated by anion-exchange chromatography. The elution profile of fermented sample was different from raw material. It was found that the fraction 4 of soymeal fermented by lactic acid bacteria for one and three days after yeast pre-fermentation for one day could promote NK-92 MI cells proliferation, and enhanced the cytotoxic activity of NK-92 MI cells against K562 cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:11:22Z (GMT). No. of bitstreams: 1
ntu-103-R01641007-1.pdf: 1190696 bytes, checksum: 088cdcbe8604c570e0e734e7eafa25d4 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
第一章、 文獻回顧 1
第一節、 免疫系統 (Immune system) 1
一、 先天性免疫反應 (Innate or non-specific immunity) 2
(一) 物理性屏障 (Physical or structural hindrance) 2
(二) 生理性屏障 (Physiologic barriers) 2
(三) 噬菌性屏障 (Endocytic and phagocytic barriers) 2
(四) 自然殺手細胞 (Natural killer cells, NK cells) 2
二、 後天性免疫反應 (Aquired or specific immunity) 2
(一) T淋巴細胞 (T lymphocytes) 3
(二) B 淋巴細胞 (B lymphocytes) 3
(三) 細胞免疫反應 (Cellular immune response) 3
(四) 體液免疫反應 (Humoral immune response) 4
第二節、 自然殺手細胞在免疫系統扮演的角色 5
一、 自然殺手細胞的功能 6
(一) 異常細胞的消滅 6
(二) 調節造血細胞 6
(三) 骨髓移植時的抗白血病效應 6
(四) 過敏及自體免疫疾病 7
二、 自然殺手細胞的活化 7
(一) 活化及抑制型受體 7
(二) 抗體倚賴型細胞毒殺作用 (Antibody-dependent cellular cytotoxicity, ADCC) 9
(三) 細胞激素的分泌 9
三、 NK-92 MI 細胞株特性 9
第三節、 飲食對於免疫系統之影響 10
第四節、 醣蛋白 11
一、 醣蛋白簡介 11
(一) 醣蛋白的結構 11
(二) 醣蛋白的功能 11
二、 醣蛋白的免疫生物活性 12
第五節、 黃豆 13
一、 黃豆的營養成分 13
(一) 蛋白質 13
(二) 脂質 13
(三) 碳水化合物 14
(四) 皂素 (Saponins) 14
(五) 異黃酮 (Isoflavone) 14
(六) 微量元素 14
二、 黃豆發酵產品 15
第六節、 固態發酵 16
一、 固態發酵之特性 16
二、 水分含量之影響 18
第七節、 發酵菌株之挑選 19
一、 乳酸菌 19
二、 酵母菌 19
三、 共培養發酵 20
第二章、 實驗目的與設計 21
第一節、 實驗目的 21
第二節、 實驗設計 22
一、 實驗流程 23
二、 實驗架構 24
(一) 第一部分:兩階段式固態發酵可行性之評估 24
(二) 第二部分:樣品免疫調節活性之評估 25
(三) 第三部分:樣品組成變化與免疫調節活性相關性之比對 26
第三章、 實驗材料與方法 27
第一節、 兩階段式固態發酵可行性之評估 27
一、 實驗材料 27
(一) 發酵基質 27
(二) 發酵菌株 27
(三) 實驗藥品 27
二、 器材與儀器 29
三、 實驗方法 29
(一) 不同粉水比黃豆粉之配製 29
(二) 菌種之活化與保存 30
(三) 發酵樣品之製備 30
(四) 菌體生長情形之測定 31
(五) 發酵終止 31
(六) 分析方法 32
第二節、 樣品免疫調節活性之評估 34
一、 實驗材料 34
(一) 實驗細胞株 34
(二) 實驗藥品 34
二、 器材與儀器 35
三、 實驗方法 35
(一) 樣品脫脂 35
(二) 樣品萃取 35
(三) 蛋白質粗萃液之製備 36
(四) 細胞培養 36
(五) 細胞存活率 (CCK-8 assay) 37
(六) NK-92 MI毒殺 K-562 細胞實驗 38
(七) 統計分析 39
第三節、 樣品組成變化與免疫調節活性相關性之比對 40
一、 實驗藥品 40
二、 器材與儀器 40
三、 實驗方法 41
(一) 樣品製備 41
(二) 活性醣蛋白的分離純化 41
第四章、 結果與討論 43
第一節、 兩階段式固態發酵可行性之評估 43
一、 發酵條件之確立 43
(一) 不同粉水比之基質水分含量及水活性 43
(二) S.cerevisiae 於不同水含量基質下之生長情形 44
(三) 乳酸菌於酵母菌預發酵黃豆粉中之生長情形 47
(四) 發酵過程中總醣及還原糖變化情形 51
(五) 發酵過程中蛋白質及胜肽變化情形 54
第二節、 樣品免疫調節活性之評估 57
一、 評估樣品粗萃液之免疫調節活性 57
二、 評估發酵樣品蛋白質粗萃液之免疫調節活性 63
第三節、 樣品組成變化與免疫調節活性相關性之比對 69
一、 以離子交換層析法區分黃豆粗醣蛋白 69
二、 評估醣蛋白質區分物之免疫調節活性 75
第五章、 結論 79
參考文獻 80
附錄 88
dc.language.isozh-TW
dc.title利用兩階段式固態發酵豆粉開發具有免疫調節活性之產品zh_TW
dc.titleDevelopment of Fermented Soybean Meals for Modulability of Immune Response by Using Two Stage Solid State Fermentationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘敏雄(Min-Hsiung Pan),潘子明(Tz-Ming Pan),柯逢年(Peng-Nisn Ke)
dc.subject.keyword醣蛋白,免疫調節,兩階段式發酵,zh_TW
dc.subject.keywordGlycoprotein,immunomodulatory,two-stage fermentation,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved