請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55841
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周正俊(Cheng-Chun Chou) | |
dc.contributor.author | Ching-Yu Hsu | en |
dc.contributor.author | 許瀞尤 | zh_TW |
dc.date.accessioned | 2021-06-16T05:09:20Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-19 | |
dc.identifier.citation | 白松、林向陽、阮榕生、鄭丹丹、劉玉環、何承雲。2005。γ-胺基丁酸的分布與製備。現代食品科技。21:202-205。
吳政倫。2008。含γ-胺基丁酸與血管收縮素I轉化酶抑制劑紅麴山藥之最適化生產與降血壓功效評估。國立臺灣大學微生物與生化學研究所碩士學位論文。台北。臺灣。 李時珍 (明)。1990。本草綱目。台北。大台北出版社。臺灣。 沈明來。1997。試驗設計學。台北。九州圖書文物有限公司。臺灣。 胡慈容。2010。培養於含薑培養液之紅麴發酵產物的抗發炎能力探討。實踐大學食品營養與保健生技學系碩士學位論文。台北。台灣。 茅原紘與杉浦友美。2001。近年のGABA 生理機能研究─脳機能改善作用,高血圧作用を中心に。食品と開発。36 (6): 4-6。 秦大京。1990。中國傳統的保健珍品 - 黑豆。鄉間小路 16:15-17。 區少梅。2002。吃GABA降血壓-神奇的γ-胺基丁酸。元氣齋出版社。中國農業化學會誌。8: 45-58 張瑜芳。2008。Monascus ruber於大豆基質發酵過程中水解酵素活性與其相關成份之變化。大同大學生物工程研究所碩士學位論文。台北。台灣。 莊佳穎。2010。富含γ-胺基丁酸之紅麴發酵產物最適生產條件與其抗憂鬱功效評估。國立臺灣大學微生物與生化學研究所碩士學位論文。台北。臺灣。 許力川。2012。Monascus purpureus NTU 568抗癌、抗發炎及抗氧化成分之研究。國立臺灣大學生命科學院生化科技系博士學位論文。台北。臺灣。 許為捷。2011a。不同麴菌發酵黑豆抑制血管收縮素轉化酶活性及捕捉 2,2-Diphenyl-1-picrylhydrazyl (DPPH) 自由基能力之影響。國立臺灣大學食品科技研究所碩士學位論文。台北。臺灣。 許雅雯。2011b。紅麴Monascus purpureus NTU 568 發酵產物中防癌及其相關活性成分之研究。國立臺灣大學生命科學院生化科技系博士學位論文。台北。臺灣。 連大進。1995。台灣黑豆的利用與生產展望。農業世界 147:39-42。 黃之丞。2010。紅麴山藥酒精萃取物緩解放射線治療衍生之副作用。國立臺灣大學微生物與生化學研究所碩士學位論文。台北。臺灣。 葉如雪。2012。黑豆經Monascus pilosus BCRC 31526發酵後對異黃酮組成與抗氧化活性之影響。國立臺灣大學食品科技研究所碩士學位論文。台北。臺灣。 廖建俐。2006。利用巨噬細胞株模式探討豆奶與發酵豆奶對發炎反應之影響。國立臺灣大學食品科技研究所碩士學位論文。台北。臺灣。 潘子明。2009。發現紅麴新價值。健康文化事業股份有限公司。臺灣。 羅國仁、余立文。2004。固態發酵製程的開發與應用。食品工業 36:2-10。 譚雅芸。2011。紅麴菌屬 (Monascus) 聚酮類生成路徑之蛋白體學研究。國立臺灣大學生命科學院生化科技學系暨研究所碩士學位論文。台北。臺灣。 蘇遠志、陳文亮、方鴻源、翁浩慶與王文祥。1970。紅麴菌 (Monascus anka) 之菌學研究。 Ahmad, N.; Srivastava, R. C.; Agarwal, R.; Mukhtar, H. Nitric oxide synthase and skin tumor promotion. Biochem Biophys Res Commun. 1997, 232, 328-331. Alberts, A. W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C. Mevinolin, a higher potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 3957-3961. AOAC. Official Methods of Analysis, 16th ed.: Association of official analytical chemists: Washington, DC. 1995. Aoki, H.; Uda, I.; Tagami, K.; Furuya, Y.; Endo, Y.; Fujimoto, K. The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci. Biotechnol. Biochem. 2003, 67, 1018-1023. Aparicio-Fernandez, X.; Yousef, G. G.; Loarca-Pina, G.; Mejia, E.; Lila, M. A. Characterization of polyphenolics in the seed coat of Black Jamapa bean (Phaseolus vulgaris L.). J. Agri. Food Chem. 2005, 53, 4615-4622. Apte, R. N.; Krelin, Y.; Song, X.; Dotan, S.; Recih. E.; Elkabets, M.; Carmi, Y.; Dvorkin, T.; White, R. M.; Gayvoronsky, L.; Segal, S.; Voronov, E. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur. J. Cancer 2006, 42, 751-759. Auroma, O. I. Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol. 1994, 32, 671-683. Beaulieu, C. Numerical data on neocortical neurons in adult rat, with special reference to the gaba population. Brain Res. 1993, 609, 284-292. Bettini, V.; Fiori, A.; Martino, R.; Mayellaro, R.; Ton, P. Study of the mechanism whereby anthocyanosides potentiate the effect of catecholamines on coronary vessels. Fitoterapia 1985, 54, 67-72. Blanc, P. J.; Loret, M. O.; Santerre, A. L.; Pareilleux, A.; Prome, D.; Prome, J. C. Pigments of Monascus. J. Food Sci. 1994, 59, 862-864. Blindermann, J. M.; Maitre, M.; Ossola, L.; Mandel, J. Purification and some properties of L-glutamate decarboxylase from human brain. Eur. J. Biochem. 1978, 86, 143-152. Boontham, P.; Chandran, P.; Rowlands, B.; Eremin, O. Surgical sepsis: dysregulation of immune function and therapeutic implications. Surg. J. R. Coll. Surg. Edinb. Irel. 2003, 1, 187-206. Bros, H.; Cillard, J.; Cillard, P.; Rahmani, M. Flavonoids as antioxidants: Determination of radicals scavenging efficiencies. Methods Enzymol. 1990, 186, 343-355. Carbonneau, M. A.; Leger, C. L.; Monnier, L.; Bonnet, C.; Michel, F.; Fouret, G.; Dedieu, F.; Descom, B. Supplementation with wine phenolic compounds increases the antioxidant capacity of plasma and vitamin E of low-density lipoprotein without changing the lipoprotein Cu2+ oxidizability possible explanation by phenolic location. Eur. J. Clin. Nutr. 1997, 51, 682-690. Chacko, B. K.; Chandler, R. T.; Mundhekar, A.; Khoo, N.; Pruitt, H. M.; Kucik, D.F.; Parks, D.A.; Kevil, C. G.; Barnes, S.; Patel, R.P. Revealing anti-inflammatory mechanisms of soy isoflavones by flow: Modulation of leukocytr-endothelial cell interactions. Am. J. Physiol. Heart Cric. Physiol. 2005, 289, 908-915. Chalas, J.; Claise, C.; Edeas, M.; Messaoudi, C.; Vergnes, L.; Abella, A.; Lindenbaum, A. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation. Biomed. Pharmacother. 2001, 55, 54-60. Chen, Y. C.; Shen, S. C.; Lee, W.R.; Hou, W.C.; Yang, L. L.; Lee, T. J. F. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide inducible NOS and cycooxygenase-2 gene expression by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J. Cell Biochem. 2001, 82, 537-548. Cho, K. M.; Lee, J. H.; Yun, H. D.; Ahn, B. Y.; Kim, H.; Seo, W. T. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus Subtilis CS90. J. Food Compos. Anal. 2011, 24, 402-410. Choung, M. G.; Baek, I. Y.; Kang, S. T.; Han, W. Y.; Shin, D. C.; Moon, H. P.; Kang, K. H. Isolation and determination of anthocyanins in seed coats of black soybean (glycine max (l.) merr.). J. Agric. Food Chem. 2001, 49, 5848-5851. Christensen, H. N.; Greene, A. A.; Kakuda, D. K.; Macleod, C. L. Special transport and neurological significance of two amino acids in a configuration conventionally designated as D. J. Exp. Biol. 1994, 196, 297-305. Chung, I. M.; Seo, S. H.; Ahn, J. K.; Kim, S. H. Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste. Food Chem. 2011, 127, 960-967. Clifford, M. N. A Nomenclature for Phenols with Special Reference to Tea, Washington, Crc. Cr. Rev. Food Sci. 1999, 41, 393-397. Cohen, J. The immunopathogenesis of sepsis. Nature. 2002, 420, 885-891. Croteau, R.; Kutchan, T. M.; Lewis, N. G. Natural Products (Secondary Metabolites). In Biochemistry and Molecular Biology of Plants. Buchanan, B., Gruissem, W., Jones, R., 2000. Eds., American Society of Plant Physiologists, USA; pp: 1250-1318. Cuvelier, M. E.; Richard, H; Berset, C. Comparison of the antioxidative activity of some acid phenols:structure activity relationship. Biosci. Biotech. Biochem. 1992, 56, 324-325. Dawson, V.; Dawson, T.; Bartley, D.; Uhl, G.; Snyder, S. H. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 1993, 13, 2651-2661. Dhakal, R.; Bajpai, V. K.; Baek, K. H. Production of gaba (γ - aminobutyric acid) by microorganmisms: A review. Braz. J. Microbiol. 2012, 1230-1241. Duthie, G.; Crozier, A. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 2000, 11, 43-47. Esaki, H.; Onozaki, H.; Kawakishi, S.; Osawa, T. Antioxidant activity and isolation from soybeans fermented with Aspergillus spp. J. Agric. Food Chem. 1997, 45, 2020-2024. Fan, J.; Li, C.; Zhu, S. W.; Chen, B. J. Purification and some properties of glutamate decarboxylase from wheat seedling. Chinese J. Biochem. Mol. Biol. 1998, 14, 641-644. Fernandez, M. A.; Saenz M. T.; Garcia M. D. Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J. Pharm. Pharmacol. 1998, 50, 1183-1186. Gallay, P.; Heumann, D.; Roy, D. L.; Barras, C.; Glauser, M. P. Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Prot. Natl. Acda. Sci. 1994, 91, 7922-7926. Gao, S. W.; Chen, Z. J. Effects of sodium ferulate on platelet aggregation and platelet thromboxane A2 in patients with coronary heart disease. Chung His I Chieh Ho Tsa Chih 1988, 8, 263-265. Goldsby, R.A.; Kindt, T.J.; Osborne, B.A.; Kuby, J. Immunobiology. In Leukocyte migration and inflammation Chapter 15. W.H. Freeman & Company: NY, USA. 2000. Gomes, A. M.P.; Malcata, F. X. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 1999, 10, 139-157. Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435-448. Griess, P. Ber. Deutsch Chem. Ges. 1879, 12, 426 Grimble, G. K.; Rees, R. G.; Keohane, P. P. Effects of peptide chain length on absorption of egg protein hydrolysates in the normal human jejunum. Gastroenterology 1987, 92, 136-142. Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes.Cell. Signal. 2001, 13, 85-94. Handoyo, T.; Morita, N. Structural and functional properties of fermented soybean (tempeh) by using Rhizopus oligosporus. Int. J. Food Prop. 2006, 9, 347-355. Hayakawa, K.; Kimura, M.; Kamata, K. Mechanism underlying | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55841 | - |
dc.description.abstract | 本研究利用Monascus pilosus BCRC 3152在30℃下進行黑豆之固態發酵十天,進而探討所製備黑豆麴之機能性成分 (酚酸、γ-胺基丁酸) 並測試黑豆麴中麩胺酸脫羧酶 (glutamate decarboxylase, GAD )活性,胺基態氮 (amino nitrogen) 之含量及其對脂多醣誘發NO、TNF-α發炎因子之影響。結果顯示,在30℃下所製備之黑豆麴中,其酚酸 (phenolic acid) 、胺基態氮含量隨著發酵天數之延長而提高。酚酸含量於發酵期間第十天時達最高,與未發酵黑豆相比其含量顯著提升2.04倍 (p < 0.05)。在發酵過程中麩胺酸脫羧酶活性在發酵時間第六天達到最高,其所生成之γ-胺基丁酸含量亦為最高。胺基態氮含量則隨著發酵天數增加而顯著增加。不論黑豆或黑豆麴甲醇萃取物在濃度為15 μg/mL時,均能顯著降低由脂多醣誘導RAW264.7所產生之NO及TNF-α之生成,當濃度為15 μg/mL時,抑制能力隨發酵天數增加而提升,其中又以發酵十天之黑豆麴甲醇萃取物效果最佳。 | zh_TW |
dc.description.abstract | In this study, a solid fermentation was performed on black soybeans with Monascus pilosus BCRC 31526 at 30℃ for a period up to 10 days. The functional components including phenolic acids, γ-aminobutyric acid (GABA) and amino nitrogen of black soybean koji were examined. The change of glutamate decarboxylase activity was also investigated. Inhibitory effect of methanol extracts of fermented or non-fermented black soybean on the production of NO and TNF-α in the LPS-induced macrophages were also compared. It was found that the 10 day-fermented black soybean contained the highest amount of phenolic acids which is ca 2.04 times that of the unfermented black soybean. Content of GABA was found closely related to the glutamate decarboxylase activity noted in the fermented black soybean. They all increased as the fermentation was extended and reached their maxima after 6 days of fermentation. Further extension of fermentation resulted in the reduction of GABA content and glutamate decarbosylase activity. Fermentation was also found to enhance the amino nitrogen content of black soybean. Methanol extracts of the fermented or non-fermented black soybean at a dosage of 15 ug/mL showed inhibitory effect on the production of NO and TNF-α in the LPS-induced macrophages. Furthermore, the inhibitory effect exerted by the fermented black soybean extract was generally significant higher (p<0.05) than that of the non-fermented black soybean extract. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:09:20Z (GMT). No. of bitstreams: 1 ntu-103-R01641030-1.pdf: 2124378 bytes, checksum: ac5ea7454c303022d281d0054711a483 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
謝誌 i 摘要 iii Abstract iv 圖目錄 ix 表目錄 x 壹、前言 1 貳、文獻回顧 2 一、黑豆 2 1. 黑豆簡介 2 2. 黑豆之生理活性 3 二、酚酸 (Phenolic acid) 3 1. 酚酸簡介 3 2. 酚酸之生理活性 5 3. 抗氧化活性 (Antioxidant activity) 5 三、γ-胺基丁酸 (γ-aminobutyric acid , GABA) 6 1. GABA之特性 6 2. 麩胺酸脫羧酶與GABA之生成代謝 6 3. GABA生理活性 8 四、胺基酸與胜肽 8 五、紅麴菌 9 1. 紅麴菌之簡介 9 2. 紅麴菌之代謝產物 9 六、發酵食品之益處 11 七、發炎反應與相關因子 12 1. 發炎反應與巨噬細胞 12 2. LPS與巨噬細胞之活化 12 3. NO與iNOS 14 4. Pro-inflammatory cytokines 15 參、材料與方法 16 一、實驗架構 16 二、實驗材料 16 1. 黑豆 16 2. 菌種 16 3. 培養基 16 4.試驗藥品 16 三、樣品製備 19 1. 菌株之保存與活化 19 2. 菌株冷凍保存 19 3. 菌株活化與接種源之製備 19 4. 黑豆麴之製備 19 5. 黑豆麴甲醇 (80%) 萃取物之製備 20 四、分析方法 20 1. 酚酸分析方法 20 1.1 黑豆麴中酚酸之萃取方法 20 1.2 酚酸之分離 20 1.3 酚酸標準曲線製作與黑豆麴中酚酸之定量 21 2. GABA分析方法 21 2.1 黑豆麴中GABA之萃取方法 21 2.2 o-phthaldialdehyde (OPA) 衍生化之HPLC分析條件 21 3. 麩胺酸脫羧酶 (Glutamate decarboxylase) 活性測定 22 3.1 麩胺酸脫羧酶之萃取方法 22 3.2 麩胺酸脫羧酶之定量分析 22 4. 胺基態氮之測定 23 5. 黑豆或黑豆麴甲醇萃取物對巨噬細胞RAW 264.7之生理活性測定 23 5.1 細胞株之活化、繼代培養與保存 23 5.1.1 細胞株之培養條件 23 5.1.2 解凍活化 23 5.1.3 繼代培養 24 5.1.4 冷凍保存 24 5.2 MTT細胞存活率分析 24 5.3 NO含量測定 25 5.4促發炎細胞激素測定 25 6.統計分析 26 肆、結果與討論 27 一、以 M. pilosus BCRC 31526製備黑豆麴之酚酸含量 27 1. 酚酸分析及標準曲線之製作 28 2. 不同發酵天數下製備黑豆麴之酚酸含量 28 二、M. pilosus BCRC 31526製備黑豆麴之γ-胺基丁酸含量 31 三、M. pilosus BCRC 31526 發酵黑豆過程中glutamate decarboxylase之活 性…..………………………………………………………………………..33 1. 不同發酵時間黑豆中glutamate decarboxylase之活性 35 四、M. pilosus BCRC 31526製備黑豆麴中期間胺基態氮之含量 35 五、M. pilosus BCRC 31526製備黑豆麴之生理活性 38 1. M. pilosus BCRC 31526黑豆麴甲醇萃取物對RAW 264.7細胞存活 之影響 40 2. 未發酵及發酵黑豆麴甲醇萃取物對LPS誘導RAW 264.7細胞生 成NO能力之影響 43 3. 未發酵及發酵黑豆麴甲醇萃取物對LPS誘導RAW 264.7細胞生成TNF-α之影響 45 伍、結論 48 陸、參考文獻 49 柒、附錄 66 | |
dc.language.iso | zh-TW | |
dc.title | Monascus pilosus BCRC 31526發酵黑豆麴中γ-胺基丁酸、酚酸之組成及其對一些生理活性之影響 | zh_TW |
dc.title | Composition of gamma-aminobutyric acid, phenolic acids and bioactivities of black soybean koji fermented with Monascus pilosus BCRC 31526 | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 游若?(Roch-Chui Yu) | |
dc.contributor.oralexamcommittee | 蔡國珍,潘崇良,邱志威 | |
dc.subject.keyword | 黑豆, 黑豆麴,M. pilosus BCRC 31526,γ-胺基丁酸,酚酸,麩胺酸脫羧?,促發炎激素,RAW 264.7, | zh_TW |
dc.subject.keyword | fermentation,black soybeans,phenolic acid,M. pilosus BCRC 31526,GABA,pro-inflammatory cytokines,RAW 264.7, | en |
dc.relation.page | 72 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。