Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55128
Title: 以三維門卷積與時序性補丁對抗式生成網路之任意形狀影片修復
Free-form Video Inpainting with 3D Gated Convolution and Temporal PatchGAN
Authors: Ya-Liang Chang
張雅量
Advisor: 徐宏民(Winston Hsu)
Keyword: 影片修復,深度學習,電腦視覺,對抗式生成網路,
Video Inpainting,Deep Learning,Computer Vision,GAN,
Publication Year : 2020
Degree: 碩士
Abstract: 任意形狀的影片修復是一項很有挑戰性的任務,可以廣泛用於影片編輯(如字幕移除、物體移除)。現有基於補丁修補的方法無法處理非重複性結構(如人臉),而將圖像修復模型直接應用於影片則會導致影片前後不一致。本篇論文提出一種基於深度學習的任意形狀影片修復模型,以三維門控卷積來應對任意形狀遮罩的不確定性,並加上時序性補丁對抗式生成網路(Temporal PatchGAN)來增強影片的一致性。此外,我們收集影片並設計一種任意形狀遮罩生成的演算法,以建立任意形狀影片修復(FVI)資料集,用於訓練和評估影片修復模型。在FaceForensics和FVI資料集上進行的實驗結果顯示,我們的方法優於現有的方法。相關程式碼、結果影片和FVI資料集都在Github上開源 https://github.com/amjltc295/Free-Form-Video-Inpainting。
Free-form video inpainting is a very challenging task that could be widely used for video editing such as text removal. Existing patch-based methods could not handle non-repetitive structures such as faces, while directly applying image-based inpainting models to videos will result in temporal inconsistency (see videos http://bit.ly/2Fu1n6b). In this paper, we introduce a deep learning based free-form video inpainting model, with proposed 3D gated convolutions to tackle the uncertainty of free-form masks and a novel Temporal PatchGAN loss to enhance temporal consistency. In addition, we collect videos and design a free-form mask generation algorithm to build the free-form video inpainting (FVI) dataset for training and evaluation of video inpainting models. We demonstrate the benefits of these components and experiments on both the FaceForensics and our FVI dataset suggest that our method is superior to existing ones. Related source code, full-resolution result videos and the FVI dataset could be found on Github https://github.com/amjltc295/Free-Form-Video-Inpainting
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55128
DOI: 10.6342/NTU202002144
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
U0001-3107202008502400.pdf
  Restricted Access
1.8 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved