請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5487完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王藹農(Ai-Nung Wang) | |
| dc.contributor.author | Yu-Hsiu Hsiao | en |
| dc.contributor.author | 蕭煜修 | zh_TW |
| dc.date.accessioned | 2021-05-15T18:00:24Z | - |
| dc.date.available | 2020-07-22 | |
| dc.date.available | 2021-05-15T18:00:24Z | - |
| dc.date.copyright | 2015-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2015-07-20 | |
| dc.identifier.citation | [1] Lawrence Evans. Partial differential equations. 1998.
[2] Manoussos Grillakis, Jalal Shatah, and Walter Strauss. Stability theory of solitary waves in the presence of symmetry, i. Journal of Functional Analysis, 74(1):160–197, 1987. [3] Paschalis Karageorgis and Walter A Strauss. Instability of steady states for nonlinear wave and heat equations. Journal of Differential Equations, 241(1):184–205, 2007. [4] Walter A Strauss. Partial differential equations. an introduction. New York, 1992. [5] Grozdena Todorova and Borislav Yordanov. Critical exponent for a non- linear wave equation with damping. Journal of Differential Equations, 174(2):464–489, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5487 | - |
| dc.description.abstract | 在這篇論文中,我們主要討論拋物方程與雙曲方程穩態解的情形。 我們會為讀者準備充分的先備知識,由淺入深地從基本的定義開始介 紹,最終會接到我們的主題 -由橢圓方程 Lφ = f(x,φ),x ∈ Rn 出發,其 中 φ 是時間獨立的解,在某些假定的條件之下,我們將可以由穩態的解 中導出不穩定狀態的結果,為了完成我們的工作,我們主要的參考文獻為 Manoussos Grillakis, Jalal Shatah, 以及 Walter Strauss 合力完成的 [2] 與 Paschalis Karageorgis, Walter A Strauss 共同完成的 [3],基本知識的準備 我們主要參考 Lawrence C. Evans 的著作 [1] 與 Walter A. Strauss 的著作 [4]。 | zh_TW |
| dc.description.abstract | We consider the steady states solutions of parabolic and hyperbolic equa- tions such as ∂tu − ∆u = f(x, u) and ∂ttu − ∆u = f(x, u). Steady state which means a system that has numbers of properties that are unchanged in time. For instance, property p of the steady state system has zero partial derivative with respect to time : ∂p = 0.
∂t In this thesis we will give a proof about the instability results about the solutions of a general elliptic equation of the form Lφ = f (x, φ),x ∈ Rn ,where L is a linear,second-order elliptic differential operator whose coefficients are smooth and bounded. φ is the time-independent solution of Lu = f (x, u),x ∈ Rn. To complete our work, we mainly consult paper[2] and [3].Also for some basic preliminaries we consult text books[1] and [4]. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T18:00:24Z (GMT). No. of bitstreams: 1 ntu-103-R01221028-1.pdf: 268698 bytes, checksum: 3c14bdfe7535bc04752e1507ca46f853 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
Contents ii 中文摘要 iv Abstract v 1 Introduction 1 1.1 LiteratureReview......................... 3 2 Background 4 2.1 SomeInequalities......................... 4 2.1.1 ConvexFunction ..................... 4 2.1.2 ElementaryInequalities ................. 5 2.2 IntegrationbyParts ....................... 6 ii 3 Instability Result 7 3.1 ParabolicEquation........................ 8 3.2 HyperbolicEquation ....................... 12 4 The Special Case f (u) = |u|p 23 References................................ 25 | |
| dc.language.iso | en | |
| dc.title | 穩態中的不穩定狀態以偏微分方程為出發之研究與探討 | zh_TW |
| dc.title | A Survey of Instability of Steady States | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 薛克民(Keh-Ming Shyue),陳瑞堂(Jui-Tang Chen) | |
| dc.subject.keyword | 非線性熱方程,非線性波方程,穩態,時間獨立, | zh_TW |
| dc.subject.keyword | Nonlinear heat equation,Nonlinear wave equation,Steady states,Instability, | en |
| dc.relation.page | 25 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 262.4 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
