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中⽂摘要

在這篇論⽂中，我們主要討論拋物⽅程與雙曲⽅程穩態解的情形。

我們會為讀者準備充分的先備知識，由淺⼊深地從基本的定義開始介

紹，最終會接到我們的主題 -由橢圓⽅程 Lφ = f(x, φ),x ∈ Rn 出發，其

中 φ 是時間獨⽴的解，在某些假定的條件之下，我們將可以由穩態的解

中導出不穩定狀態的結果，為了完成我們的⼯作，我們主要的參考⽂獻為

Manoussos Grillakis, Jalal Shatah, 以及 Walter Strauss 合⼒完成的 [2] 與

Paschalis Karageorgis, Walter A Strauss 共同完成的 [3]，基本知識的準備

我們主要參考 Lawrence C. Evans 的著作 [1] 與 Walter A. Strauss 的著作

[4]。

關鍵字：⾮線性熱⽅程、⾮線性波⽅程、穩態、時間獨⽴
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Abstract

We consider the steady states solutions of parabolic and hyperbolic equa-

tions such as ∂tu − ∆u = f(x, u) and ∂ttu − ∆u = f(x, u). Steady state

which means a system that has numbers of properties that are unchanged

in time. For instance, property p of the steady state system has zero partial

derivative with respect to time : ∂p
∂t

= 0.

In this thesis we will give a proof about the instability results about the

solutions of a general elliptic equation of the form Lφ = f(x, φ),x ∈ Rn,where

L is a linear,second-order elliptic differential operator whose coefficients are

smooth and bounded. φ is the time-independent solution of Lu = f(x, u),x ∈

Rn. To complete our work, we mainly consult paper[2] and [3].Also

for some basic preliminaries we consult text books[1] and [4].

Keywords: Nonlinear heat equation; Nonlinear wave equation;

Steady states; Instability
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Chapter 1

Introduction

In this thesis we consider the parabolic equation

∂tu+ Lu = f(x, u), x Rn (1.1)

and the more complicated hyperbolic equation

∂2t u+ a∂tu+ Lu = f(x, u), x ∈ Rn (1.2)

while the L is the linear second-order elliptic differential operator whose

coefficients are smooth and bounded. a is arbitrary real number and possibly

zero. f(x, u) is the nonlinear term. To studying many topics in PDE it’s quite

important to understanding the physical properties. When we studying the

heat equation(also known as diffusion equation), we know that it describes

the distribution of heat in a region. When studying the wave equation, it

related to the models for vibrating string(n=1), membrane(n=2) and elastic
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solid(n=3). Now we focus on time-independent solutions, which known as the

steady states in this thesis. Our main work is to provide sufficient conditions

such that we can draw nonlinear instability form linearized instability.

Before we come to the main instability result we have the following as-

sumptions about the time-independent solution φ and the nonlinear term

f(x, u). The assumptions are introduce in two parts, first part is meant

to conclude that the φ is a nonlinearly unstable solution of both (1.1) and

(1.2). The second part is meant to improve the conclusion of first part that

the instability occurs by blow up.

First Part:

(A1)The equation Lφ = f(x, φ) has a C2 solution φ.

(A2)The adjoint linearized operator L∗ − fu(x, φ) has a negative eigenvalue

−σ and a corresponding eigenfunction χ ∈ L1(Rn) ∩ L2(Rn) which is

non-negative.

(A3)The nonlinear term f(x, s) is convex in s and is C1.

(A4)Both f(x, φ) and fu(x, φ) are bounded.

Second Part:

(A5)The product φχ is integrable, where χ is the eigenfunction mentinoed

in (A2).

(A6)There exist C0 > 0 and p > 1 such that f(x, s) ≥ C0|s|p for all

(x, s) ∈ Rn × R
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In our assumptions, (A2) is to ensure that the presence of an negative

eigenvalue. Besides, the time independent solution φ is not necessarily to be

bounded. In Chapter3 we are going to prove the instability by using the first

part of the assumptions and the instability by blow up by using the both

parts of the assumptions. There is a special case that when f(u) = |u|p for

some p > 1 and φ is bounded. We can get the instability by blow up only us

assumptions (A1) and (A2).

1.1 Literature Review

The paper [2] talks about that with arbitrary nonlinearities and more

general class of bounded states, but the assumptions they give are more

restrictive.

The paper [3] is our mainly consult. With the assumptions (A1)-(A6)

they talk about the instability in a harder way. We are going to redesign and

rearrange the statements to make the reader more readily to appreciate the

results. Besides, we use [1] and [4] to give some basics for the readers.
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Chapter 2

Background

2.1 Some Inequalities

2.1.1 Convex Function

Definition 1. A function F : Rn → R is convex provided that

f(τx+ (1− τ)y) ≤ τf(x) + (1− τ)f(y)

for all x, y ∈ Rn and for 0 ≤ τ ≤ 1

If a function f is a convex function then f has the following properties

* f is concave if −f is convex

* f is strictly convex if f satisfies f(τx+(1−τ)y) < τf(x)+(1−τ)f(y),

for all x, y ∈ Rn and 0 ≤ τ ≤ 1
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* (Supporting hyperplanes)Suppose f : Rn → R is convex. Then for

each x ∈ Rn there exists r ∈ Rn such that the inequality f(y) ≥

f(x) + r · (y − x) holds for all y ∈ R.

2.1.2 Elementary Inequalities

In this section we will introduce some basic inequality that might be used

in our thesis

I.Cauchy’s Inequality

ab ≤ a2

2
+
b2

2
a, b ∈ R (2.1)

Proof. 0 ≤ (a− b)2 = a2 − 2ab+ b2

II.Young’s inequality Let 1 < p, q < ∞,also 1
p
+ 1

q
= 1. Then we have

the following

ab ≤ ap

p
+
bq

q
a, b > 0 (2.2)

Proof. Consider the mapping x 7→ ex is convex, by what we’ve mentioned

above we have

ab = eloga+logb = e
1
p
logap+ 1

q
logbq ≤ 1

p
eloga

p
+ 1

q
elogb

q
= ap

p
+ bq

q
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III.Hölder’s inequality Assume that 1 ≤ p, q ≤ ∞, 1
p
+ 1

q
= 1. Then if

u ∈ Lp(U),v ∈ Lq(U), we have∫
U

|uv|dx ≤ ||u||Lp(U)||v||Lq(U)

Proof. By homogeneity we may assume that ||u||Lp = ||v||Lq = 1. Then we

apply Young’s inequality, for 1 < p, q <∞ we have that∫
U

|uv|dx ≤ 1

p

∫
U

|u|pdx+ 1

q

∫
U

|v|qdx = 1 = ||u||Lp||v||Lq

The previous three inequalities will be use in our thesis, the readers can

get acquaintance with these inequalities for the further reading. For more

details, readers can check reference [1] APPENDIX B.

2.2 Integration by Parts

One of our assumption for the main instability result contains the convex

function, hence we have a brief talk about it in the previous section. Also

integration by parts has been used in the proof of the main instability result.

The following is the integration by parts formula, which will be wildly used

in our thesis

For u = u(x), v = v(x) ∫
udv = uv −

∫
vdu
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Chapter 3

Instability Result

In [3] has some discussion about the instability of steady states. We will

use an easier way to talk about the main instability results with the solution

of a general elliptic equation of the form

Lφ = f(x, φ), x ∈ Rn

For both L and φ are what we’ve defined in Chapter 1. L is a linear, second-

order elliptic differential operator whose coefficients are smooth and bounded.

φ is the time-independent solution. Besides the assumptions (A1) − (A6)

mentioned in Chapter 1 will be used in our proof, we’ll not repeat them here.

First, we deal with the parabolic case which is much easier than the hy-

perbolic case. The reader can get acquaintance with the proof technique

in parabolic case, after that we will give two lemmas for hyperbolic case.
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Finally we’ll come to the most complicated part the hyperbolic case.

3.1 Parabolic Equation

First we focus on the equation

∂tu+ Lu = f(x, u), u(x, 0) = φ(x) + ψ0(x)

The steady state φ will be an exact solution when the perturbation ψ0 ≡ 0.

Now we consider the case that the perturbation ψ0 is small.

Theorem 1. (Parabolic Equation)

For the first part of the assumptions (A1-A4) we let ψ0 ∈ L∞(Rn) be con-

tinuous with ∫
Rn

χ(x)ψ0(x)dx > 0 (3.1)

Let 0 < T ≤ ∞ and let u be a solution of

∂tu+ Lu = f(x, u), u(x, 0) = φ(x) + ψ0(x) (3.2)

on [0,T) such that u− φ is continuous and bounded.

(a)If T = ∞ the the norm ||u− φ||L∞(Rn) must grow exponentially.

(b)Add assumptions (A5),(A6) then we can have that T <∞

Proof. (a)First consider the function

G(t) =

∫
Rn

χ(x) · w(x, t)dx, w(x, t) = u(x, t)− φ(x) (3.3)
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We have

|G(t)| ≤ ||χ||L1(Rn) · ||w||L∞(Rn)

It’s quite simple for us to find that the L∞ − norm has to either grow

exponentially or blow up whenever G(t) does.

Let us first focus on part (a) and assume that w = u− φ is continuous on

[0,∞). By distribution we have that w is a solution of

∂tw + Lw = f(x,w + φ)− f(x, φ) , w(x, 0) = ψ0(x)

Then in view of the convexity assumption (A3) we have

∂tw + [L− f(x,w + φ)− f(x, φ)

(w + φ− φ)
]w ≥ 0 (3.4)

which gives that

∂tw + [L− fu(x, φ)]w ≥ 0

Also in assumption (A2) we note that χ(x) ≥ 0 (χ(x) is non-negative),

we may multiply the inequality by χ(x)θ(t), where θ(t) is an arbitrary non-

negative test function. Then we obtain the following inequality

∂twχ(x)θ(t) + [L− fu(x, φ)]wχ(x)θ(t) ≥ 0

Then we integral both parts to get the following

∫ t

0

∫
Rn

χ(x) · ∂tw · θ(τ)dxdτ +
∫ t

0

∫
Rn

[L∗ − fu(x, φ)]χ(x) · w · θ(τ)dxdτ ≥ 0

(3.5)
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To simplify the first part of the integral we note that

G′(t) =

∫
Rn

χ(x)∂tw(x, t)dx

Which is a continuous function by what we’ve defined at (3.3), for ∂tw is

continuous with values in L2(Rn).To simplify the second part of the integral,

by assumption (A2) we have

[L∗ − fu(x, φ)]χ = −σ2χ

Then the equation (3.5) can be reduce to

∫ t

0

G′(τ) · θ′(τ)dτ − σ2

∫ t

0

G(τ) · θ(τ)dτ ≥ 0

For all non-negative test function θ(t),eigenfunction χ, equivalently we have

G′(t)− σ2G(t) ≥ 0 (3.6)

Since G(0) > 0 by the assumption, the exponential growth of G(t) follows.

(b)Next we add assumptions (A5) and (A6) for part (b). Suppose that

T = ∞. As we have just shown G(t) must grow exponentially fast. Using

our assumption (A4) Both f(x, φ), fu(x, φ) are bounded and (A6) There

exists C0 > 0 and p > 1 such that f(x, s) ≥ C0|s|p for all (x, s) ∈ Rn×R, we

have the following

∂tw + [L− fu(x, φ)]w = f(x,w + φ)− f(x, φ)− fu(x, φ)w ≥

C0|w + φ|p − C1 − C1|w|
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Then we multiply both sides by the non-negative eigenfunction χ and in-

tegrating over space, we can have

G′(t)− σ2G(t) ≥ C0

∫
Rn

χ|w + φ|pdx− C1

∫
Rn

χdx− C1

∫
Rn

χ|w|dx (3.7)

Then by triangular inequality we have the last integral is at most

∫
χ|w|dx =

∫
χ|(w + φ)− φ|dx ≤

∫
χ|w + φ|dx+

∫
χ|φ|dx

We can therefore reduce equation (3.7) to be

G′(t) ≥ σ2G(t)+C0

∫
Rn

χ|x+φ|pdx−C1

∫
Rn

χdx−C1(

∫
Rn

χ|w+φ|dx+
∫
Rn

χ|φ|dx)

Since χ ∈ L1 by (A2) and χφ ∈ L1 by (A5), we then deduce that

C1

∫
Rn

χdx+ C1

∫
Rn

χ|φ|dx ≤ C2

G′(t) ≥ σ2G(t) + C0

∫
Rn

χ|x+ φ|pdx− C1

∫
Rn

χ|w + φ|dx− C2

Since G(t) grows exponentially fast we have

G′(t) ≥ C0

∫
Rn

χ|w + φ|pdx− C1

∫
Rn

χ|w + φ|dx ≡ C0A(t)− C1B(t) (3.8)

by distribution and for all large enough t.

For B(t) grows exponentially fast by the triangular inequality we have

G(t) ≤
∫
Rn

χ|w|dx ≤
∫
Rn

χ|w + φ|dx+
∫
Rn

χ|φ|dx = B(t) + C3 (3.9)
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For A(t) grows exponentially fast by the Hölder’s inequality we have

B(t) =

∫
Rn

χ|w + φ|dx ≤
(∫

Rn

χdx

) p−1
p

(∫
Rn

χ|w + φ|pdx
) 1

p

= C4A(t)
1
p

(3.10)

This inequality gives that A(t) grows faster than B(t) i.e.

A(t) ≥ C−p
4 B(t)p (3.11)

Hence the equation A(t) dominate B(t). Then combining (3.8), (3.9) and

(3.11) we have the inequality

G′(t) ≥ C5A(t) ≥ C6B(t)p ≥ C7G(t)
p (3.12)

Since G(t) is positive, we can deduce that T <∞ as needed.

3.2 Hyperbolic Equation

To complete the part(a) of Hyperbolic case, in [3] we have the following

lemma.

Lemma 1. Let a ∈ R and b > 0. Suppose y(t) is a C1 function such that

y′′ + ay′ − by ≥ 0

on some interval [0, T ) in the sense of distributions. If

a+
√
a2 + 4b

2
· y(0) + y′(0) > 0 (3.13)

the both y(t) and y′(t) must grow exponentially on [0, T )
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Proof. Let λ1, λ2 be the roots of the characteristic equation λ2 + aλ− b = 0

and set z = y′ − λ1y i.e. z′ = y′′ − λ1y
′. Besides, the roots λ1 < 0 < λ2.

Then

y′′ + ay′ − by ≥ 0 → y′′ − (λ1 + λ2)y
′ + λ1λ2y ≥ 0

(y′′ − λ1y
′) + λ2(y

′ − λ1y) = z′ − λ2z ≥ 0

Using test function θ(t) we obtain the another test function e−λ2tθ(t), use

integration by parts it follows that

−
∫ t

0

z(τ)e−λ2τθ′(τ)dτ ≥ 0

Choosing θ(t) to be an approximation of the characteristic function on

the interval (0, t), we can easily deduce that z(t)e−λ2t − z(0) ≥ 0 i.e. z(t) ≥

eλ2tz(0). Thus we have y′ − λ1y ≥ eλ2tz(0) (for we have z = y′ − λ1y), which

implies the following inequality

y(t) ≥ eλ1ty(0) + eλ2t−eλ1t

λ2−λ1
· z(0)

Then by what we’ve let at the beginning that λ1 < 0 < λ2, the exponential

growth of y the follows, provided that

z(0) = y′(0)− λ1y(0) = y′(0) +
a+

√
a2 + 4b

2
· y(0) is positive.

Then in the view of our assumption (3.13), the exponential growth of y thus

follows.
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Finally for the exponential growth of y′(t). Similarly we assume w = y′−λ2y

which satisfies

y′′ + ay′ − by = (y′′ − λ1y) + λ2(y
′ − λ1y) = w′ − λ1w ≥ 0

As what we’ve done above, we have w(t) ≥ eλ1tw(0). Since y(t) grows expo-

nentially by above, then the equation

y′(t) ≥ λ2y(t) + eλ1tw(0)

force y′(t) to grow exponentially fast as well because λ1 < 0 < λ2 the we

complete the proof.

The result will be very useful in the proof of Theorem 2.-Hyperbolic Equa-

tion. The reader can think more carefully about the Lemma before the

further reading.

To complete part(b) of Hyperbolic case,we need the following lemma. In

[5] has a special case which is similar to the case of the following lemma. We

give a little modification of the property in [5] to complete our proof.

Lemma 2. Let a ∈ R, b > 0 and p > 0. Suppose y(t) is a non-negative C1

function such that

y(T1) > 0, y′(T1) > 0, y′′(t) + ay′(t) ≥ by(t)p

on some interval [T1, T2) in the sense of distributions. Then T2 <∞
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Proof. We’ll start in an easier way. To claim that y′′(t) + ay′(t) ≥ by(t)p.

First we start form the special case y ∈ C2 and a=1. Now we consider the

in equality F ′′(t) +F ′(t) ≥ C0(t+K)A|F (t)|1+r, and t > 0 with C0 > 0 such

that F (0) > 0 and F ′(0) > 0. We are going to claim that F (t) blows up in

finite time. Now we take the auxiliary initial value problem

Y ′(t) = v(t+K)A[Y (t)]1+r/2, F (0) > 0 (3.14)

Where v > 0 is a small number to be chosen later. Since

Y (t) =
(
Y (0)]−r/2 − vr

2(A+1)
[(t+K)A+1 −KA+1]

)−2/r

and A>-1, the solution Y (t) of the above problem blows up at finite time T0

and satisfies Y (t) > Y (0) > 0 for 0 ≤ t < T0. Then we compute the second

derivative

Y ′′(t) = v(1 + r/2)(t+K)A[Y (t)]r/2Y ′(t) + vA(t+K)A−1[Y (t)]1+r/2

≥ v2(1 + r/2)(t+K)2A[Y (T )]1+r (3.15)

where we have that A ≥ 0 and Y satisfies (3.14). Now we add (3.14) and

(3.15) also observing that 2A ≥ A (For we have A ≥ 0) and [Y (t)]1+r/2 <

[Y (0)]−r/2[Y (t)]1+r, then we have

Y ′′(t) + Y ′(t) ≥ v2(1 + r/2)(t+K)2A[Y (t)]1+r + v(t+K)A[Y (t)]1+r/2

≥ B(t+K)A[Y (t)]1+r

15



Where B = v2(1 + r/2) + vA[Y (0)]−r/2

Further, we choose v so small such that

B = v2(a+ r/2) + vA[Y (0)]−r/2 < C0

Y ′(0) = vKA[Y (0)]1+r/2 < F ′(0)

Then we have the following inequality

Y ′′(t) + Y ′(t) ≥ C0(t+K)A[Y (t)]1+r (3.16)

and the initial condition Y (0) ≤ F (0) and Y ′(0) < F ′(0) . Now we show

that F (t) ≥ Y (t) for 0 ≤ t < T0, so we have F(t) also blows up at in finite

time. From F ′(0) > Y ′(0) we have F ′(t) > Y ′(t) for t small enough the we

set

t0=sup{t ∈ [0, T0)|F ′(τ) > Y ′(τ) for 0 ≤ τ < t}

Suppose t0 < T0, where T0 is the blow up time for Y (t). Thus we have

F ′(t) > Y ′(t) for t ∈ [0, t0) and F ′(t0) = Y ′(t0). Since F ′(t) − Y ′(t) > 0,

the function F (t) − Y (t) is strictly increasing in the interval 0 ≤ t < t0. In

particular F (t) − Y (t) > F (0) − Y (0) = 0 for such t. Note that F (t0) >

Y (t0), because if F (t0) = Y (t0) then the function F (t) − Y (t) would have

zeros at 0 and t0, so the derivative will vanish between 0 and t0. Therefore,

F (t0) > Y (t0) and F ′(t0) = Y ′(t0).

On the other hand, by (3.14) to (3.16) we have the following

16



[F ′′(t)− Y ′′(t)] + [F ′(t)− Y ′(t)] ≥ C(t+K)2A{[F (t)]1+r − [Y (t)]1+r ≥ 0

For 0 ≤ t ≤ t0. We rewrite the above inequality in the form

d

dt
et[F ′(t)− Y ′(t)] ≥ 0

Then we integral the above inequality over [0, t0] to obtain

et0 [F ′(t0)− Y ′(t0)] ≥ F ′(0)− Y ′(0)

Which gives that F ′(t0) − Y ′(t0) > 0. We come to a contradiction, thus we

have t0 ≥ T0. Then the proof of the special case is complete.

After the case a = 1, The case a > 0 and a ≤ 0 is similar and much easier.

If y is merely C1, we can apply the same test function of the previous Lemma

to complete our proof. The reader can have more details in [5]

By the preceding lemmas we will come to the hardest part of this thesis-the

hyperbolic equation. For hyperbolic case we focus on the following equation.

∂2t u+a∂tu+Lu = f(x, u), u(x, 0) = φ(x)+ψ0(x), ∂tu(x, 0) = ψ1(x). (3.17)

As what we’ve mentioned in 3.1 the steady state φ will be the exact solution

when the perturbations ψ0 ≡ ψ1 ≡ 0, also we concerned with the case that

the perturbation (ψ0, ψ1) is small.
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Theorem 2. (Hyperbolic Equation)

Let a ∈ R. As what we’ve done in section 3.1, we consider the first part

of the assumptions at the beginning and let (ψ0, ψ1) ∈ H1(Rn)× L2(Rn) be

such that

a+
√
a2 + 4σ2

2

∫
Rn

χ(x)ψ0(x)dx+

∫
Rn

χ(x)ψ1(x)dx > 0 (3.18)

Let 0 < T ≤ ∞ and let u be a solution of (3.13) on [0, T ) such that

u−φ is continuous in t with values in the energy space and f(x, u) is locally

integrable.

(a)If T = ∞, then the energy norm

||u(t)− φ||e ≡ ||u(•, t)− φ(•)||H1(Rn) + ||∂tu(•, t)||L2(Rn) (3.19)

must grow exponentially.

(b)Add assumptions (A5),(A6). Then we can have that T <∞

Proof. (a)As what we’ve done in Theorem1. consider the function

G(t) =

∫
Rn

χ(x) · w(x, t)dx, w(x, t) = u(x, t)− φ(x)

By the assumption(A2) we have the following

|G(t)| ≤ ||χ||L2(Rn) · ||w(t)||L2(Rn) ≤ C||w(t)||e

For we know that χ ∈ L1(Rn) ∩ L2(Rn) i.e. ||χ||L2(Rn) is finite. By the in-

equality we can easily have that the G(t) is well-defined and bounded as long
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as the energy norm of w is bounded; also the energy norm grows exponen-

tially provided that G(t) does and the energy norm goes infinite whenever

G(t) does.

Fist we focus on part (a). Assume that w = u− φ is continuous on [0,∞)

with values in energy space. Then by distribution we have that w is a solution

of the following equation

∂2t + a∂tw + Lw = f(x,w + φ)− f(x, φ)

Then with the assumption (A3) the convexity of f(x, s) we have

∂2t + a∂tw + [L− Fu(x, φ)]w ≥ 0

As what we’ve done in Parabolic case. We consider an arbitrary non-negative

test function θ(t), and by assumption (A2) that χ(x) is also non-negative.

Multiply the inequality by χ(x)θ(t) we obtain

∂2twχ(x)θ(t) + a∂twχ(x)θ(t) + [L− fu(x, φ)]w ≥ 0

Be careful that for the Hyperbolic case we should deal with the second

order partial derivative of t i.e. the ∂2t part. Now we integral both parts∫ t

0

∫
Rn

∂2tw · χ(x)θ(τ)dxdτ +
∫ t

0

∫
Rn

χ(x) · a∂tw · θ(τ)dxdτ

+

∫ t

0

∫
Rn

[L∗ − fu(x, φ)]χ(x) · w · θ(τ)dxdτ ≥ 0
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Use integration by parts we can simplify the first integral to get

−
∫ t

0

∫
Rn

χ(x) · ∂tw · θ′(τ)dxdτ +
∫ t

0

∫
Rn

χ(x) · a∂tw · θ(τ)dxdτ

+

∫ t

0

∫
Rn

[L∗ − fu(x, φ)]χ(x) · w · θ(τ)dxdτ ≥ 0

(3.20)

Now the first and the second integral has ∂t element, to simplify them we

use the same technique as what we’ve done at Parabolic case. Note that

G′(t) =

∫
Rn

χ(x) · ∂tw(x, t)dx

G′(t) is a continuous function by our definition of G(t). For we know that

∂tw is continuous with values in L2(Rn). To simplify the third part of the

integral, by the assumption (A2) we have

[L∗ − fu(x, φ)]χ = −σ2χ

Then the equation (3.17) can be reduced to

−
∫ t

0

G′(t) · θ′(τ)dτ + a

∫ t

0

G′(t) · θ(τ)dτ − σ2

∫ t

0

G(τ) · θ(τ)dτ ≥ 0

θ(t) is the non-negative test function and apply integration by parts we have

G′′(t) + aG′(t)− σ2G(t) ≥ 0

Then by our assumption (3.15) note that

a+
√
a2 + 4σ2

2
·G(0) +G′(0) > 0

Now we apply the Lemma1. Both G(t) and G′(t) must grow exponentially

fast. Then we finish the part (a).
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Finally we turn to the part (b). Now we add assumptions (A5) and (A6).

Suppose that T = ∞. For we’ve known that both G(t) and G′(T ) must grow

exponentially fast by the proof of part (a). Now consider the assumptions

(A4) and (A6) we have the following

∂2tw + a∂tw + [L− fu(x, φ)]w = f(x,w + φ)− f(x, φ)− fu(x, φ)w ≥

C0|w + φ|p − C1 − C1|w|

Then we multiply both sides by the non-negative eigenfunction χ and inte-

grating over space to obtain the following equation

G′′(t) + aG′(t)− σ2G(t) ≥
∫
Rn

χ|w + φ|pdx− C1

∫
Rn

χdx− C1

∫
Rn

χ|w|dx

(3.21)

What’s more difficult than the Parabolic case (3.7), we should deal with the

second derivative of G(t). As what we have done in Theorem1 we have

G′′(t) + aG′(t) ≥ σ2G(t) + C0

∫
Rn

χ|w + φ|pdx− C1

∫
Rn

χ|x+ φ|dx− C2

By using the triangular inequality and the assumptions (A2)χ ∈ L1, (A5)The

product χφ is integrable i.e. χφ ∈ L1.

Since G(t) grows exponentially fast, the previous inequality gives that

G′′(t)+ aG′(t) ≥ C0

∫
Rn

χ|w+φ|pdx−C1

∫
Rn

χ|w+φ|dx ≡ C0A(t)−C1B(t)

(3.22)

by distribution and for large enough t.
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For B(t), consider the triangular inequality

G(t) ≤
∫
Rn

χ|w|dx ≤
∫
Rn

χ|w + φ|dx+
∫
Rn

χ|φ|dx = B(t) + C3 (3.23)

Hence we have that B(t) grows exponentially fast.

A(t) grows exponentially fast by Hölder’s inequality we have

B(t) =

∫
Rn

χ|w + φ|dx ≤
(∫

Rn

χdx

) p−1
p

(∫
Rn

χ|w + φ|pdx
) 1

p

= C4A(t)
1
p

(3.24)

This inequality gives that A(t) grows faster than B(t) i.e.

A(t) ≥ C−p
4 B(t)p (3.25)

Hence the value of A(t) dominate B(t). Then we combining the equation

(3.19),(3.20) and (3.22) by distribution we have the following

G′′(t) + aG′(t) ≥ C5A(t) ≥ C6B(t)p ≥ C7G(t)
p (3.26)

Besides both G(t) and G′(t) are positive by above. Now we apply Lemma2

for we have G′′(t) + aG′(t) ≥ C7G(t)
p the we have the contradiction that

T <∞. Hence the proof of part (b) is completed.

After reading these Theorems and Lemmas readers can get a closer look

about instability of steady states in an easier way. For some applications we

will give some examples in the next chapter.
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Chapter 4

The Special Case f (u) = |u|p

In chapter 3 of [3] gives an example of convexity nonlinearity with poten-

tial term. Now we are going to introduce a special case for the convexity

nonlinearity. For the original problem is

−∆φ+ V (x) · φ = f(φ) x ∈ Rn (4.1)

Now we suppose that the non-linear term f(φ) = |φ|p for p > 1 and φ is

bounded. Under these condition we only need assumptions (A1) and (A2)

the we can still get the conclusion that the instability by blow up. In [3] only

talks about this fact with few words. We are going to show this fact in the

following proof. To claim the statement holds true, we are going to check

that whether the assumptions (A3)-(A6) holds for f(φ) = |φ|p for p > 1 and

φ is bounded
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Proof. In this proof we are going to check that under the special case f(u) =

|u|p and p > 1, φ the assumptions (A3)-(A6) still holds.

(A3)The non-linear term f(x, s) is convex in s and is C1:

For f(x, u) = f(u) in our case, f(u) = |u|p by the convex function

properties given in Chpater 2 we can easily have that f(u) = |u|p is

convex in u. Also it’s clear that f(u) is C1. Hence we have the assump-

tion (A3) holds.

(A4)Both f(x, φ) and fu(x, φ) are bounded :

For f(φ) = |φ|p and φ is bounded we can easily get the assumption

(A4) holds.

(A5)The product φχ is integrable: (χ is the eigenfunction in (A2))

For φ is bounded we have the product φχ must integrable.

(A6)There exist C0 > 0 and p > 1 such that f(x, s) ≥ C0|s|p for all

(x, s) ∈ Rn × R :

It’s quite simple that for f(u) = |u|p we can find C0 > 0 and p > 1 such

that f(s) ≥ C0|s|p.

For we have the assumptions (A1)-(A6) all holds in this special case f(u) =

|u|p. Therefore we can improve the example in [3] that instability by blow

up by using the Theorem 1 and Theorem 2 in Chapter 3.
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