Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54832
Title: 單一聚焦離子束斑點研磨及其重疊行為之研究
Study of Focused Ion Beam Milling Single Spot Topography and its Superimposition Behavior
Authors: Pei-Jia Wu
吳佩家
Advisor: 管傑雄
Keyword: 聚焦離子束,腫起,研磨,矽,研磨速度,加速電壓,離子束電流,形貌,深度,
focused ion beam,FIB,swelling,milling,silicon,milling speed,accelerate voltage,beam current,topography,depth,
Publication Year : 2015
Degree: 碩士
Abstract: 本論文研究聚焦離子束(Focused ion beam, FIB)砰擊矽基板後所產生的腫起(swelling)和研磨(milling)的現象,研究著重在不同參數下研磨後的形貌變化。實驗過程,首先必須先調整FIB像差(stigmator)及焦距,讓FIB輪廓為圓形且砰擊於樣品時會是最集中的離子束,FIB以掃描單點(single-spot)的方式加工於基板,接著用原子力顯微鏡(Atomic force microscope, AFM)測量經過FIB加工過的矽基板形貌輪廓。單點研磨後基板會有一深度似高斯分布的凹洞,隨駐留時間(dwell time)增長凹洞會加深且變寬,可以從實驗結果觀察到在一定駐留時間範圍內,研磨深度和駐留時間程線性關係,並可得到FIB單點研磨速度的函數,而此函數是高思函數。
不同加速電壓(Accelerate voltage)、離子束電流(beam current)會改變研磨速率分布的影響。當離子束電流變高研磨速度會變快,整體的高思函數會變高變寬,加速電壓則會影響單點研磨的寬度,低電壓時高斯函數會變寬。本論文會展示使用FIB研磨速度函數,去預測FIB研磨單點、兩點、線、方形微結構後的形貌,並和實驗結果做比較,解釋預期深度和實驗結果的差距來自能量累積,能量累積造成非晶化但尚未造成濺射,因此AFM無法量測到。最後研究如何控點距(pitch)設計線結構達到波浪(fluctuation)能變小。
In this thesis, we investigated the swelling and milling due to FIB impinging, primary research is the milling topography contours. In Experiments, before FIB patterns, we adjusted FIB stigmator and focus to obtain a circular FIB profile and tight FIB. FIB scanned on the silicon substrate using single-spot, after that Atomic force microscope (AFM) measured topography of patterned silicon substrate. The substrate surface showed a Gaussian shape crater caused by FIB milling a single spot and the crater increased depth and width with longer dwell time. We observed that milling depth is linear to dwell time in limited dwell time and calculated the FIB milling speed. FIB milling speed is a Gaussian function.
Accelerate voltage and beam current affect milling speed. The higher milling current results in higher milling speed, and Gaussian function became taller and broad. Accelerate voltage affects width of milling single spot, lower Accelerate voltage wider Gaussian shape is. This thesis presents the predicted topography of FIB milling single spot, two spots, line and square fabrication by milling speed function. The predicted topography are compared with experiments. We did the double spot experiments to explain the deviations occurs because of energy accumulation. At the end of thesis, we show adjusting pitch reduce the fluctuate of line fabrication bottom.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54832
Fulltext Rights: 有償授權
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
4.59 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved