Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54541
Title: 考慮應變數之因素模型:以預測台灣經濟成長率為例
Forecast Performance of Supervised Factor Models:
An Application to Taiwan’s Economic Growth Rates
Authors: Ying-Chin Chen
陳映君
Advisor: 管中閔(Chung-Ming Kuan)
Keyword: 因素模型,主成份分析,偏最小平方回歸模型,主共變量回歸模型,組合 預測之主成分分析,預測,
Factor Analysis,Principal Component Analysis,Partial Least Square,Principal Covariate Regression,Combining Forecast Principal Component Analysis,Forecast,
Publication Year : 2014
Degree: 碩士
Abstract: 本論文討論三種考慮應變數之因素模型(supervised factor model): 偏最小平方回歸模型(Partial Least Square,PLS)、主共變量回歸模型(Principal Covariate Regression,PCovR)及組合預測之主成分分析模型(Combining Forecasts Principal Component Analysi,CFPC)。我們將上述三種考慮應變數之因素模型應用在台灣經濟成長率之預測,並以均方根預測誤差(RMSFE)及平均絕對預測誤差(MAFE)衡量其預測之優劣。我們發現,考慮應變數之因素模型通常較不考慮應變數的因素模型(Principal Component Analysis, PCA)在預測上有更小的預測誤差,其中又以CFPC表現最好。另外,我們也比較考慮應變數之因素模型與主計總處對經濟成長之預測。我們發現CFPC之預測與主計總處之預測能力不相上下,因此我們認為CFPC是一個能夠避免模型錯誤設定的簡化模型(reduce form)。
This thesis discusses three supervised factor models: Partial Least Square (PLS), Principal Covariate Regression (PCovR) and Combining Forecasts Principal Component Analysis (CFPC). We apply the supervised and unsupervised factor models to forecast Taiwan’s economic growth rates with 77 macroeconomic variables. We evaluate the performance of different models by comparing their RMSFE and MAFE. We found that the supervised factor models usually outperform unsupervised factor model (Principal Component Analysis, PCA) and that CFPC performs the best among the three supervised factor models. Besides, the forecasts of CFPC and Directorate General of Budget, Accounting and Statistics (DGBAS) have similar performance based on the Diebold-Mariano (DM) test, so CFPC may be a good alternative when we want to avoid ad hoc models. PCovR and PLS also have smaller RMSFE and MAFE than PCA, but they are not statistically significantly better than PCA.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54541
Fulltext Rights: 有償授權
Appears in Collections:經濟學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
4.15 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved