請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54417
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖英志(Ying-Chih Liao) | |
dc.contributor.author | Wei-Ting Ke | en |
dc.contributor.author | 柯威廷 | zh_TW |
dc.date.accessioned | 2021-06-16T02:55:42Z | - |
dc.date.available | 2025-08-03 | |
dc.date.copyright | 2020-08-06 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-03 | |
dc.identifier.citation | 1. Jang, T.-S., et al., 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. 2018. 2. Chimene, D., et al., Advanced bioinks for 3D printing: a materials science perspective. 2016. 44(6): p. 2090-2102. 3. Mobaraki, M., et al., Bioinks and bioprinting: A focused review. 2020. 18: p. e00080. 4. Donderwinkel, I., J.C. Van Hest, and N.R.J.P.C. Cameron, Bio-inks for 3D bioprinting: recent advances and future prospects. 2017. 8(31): p. 4451-4471. 5. Ozbolat, I.T. and Y.J.I.T.o.B.E. Yu, Bioprinting toward organ fabrication: challenges and future trends. 2013. 60(3): p. 691-699. 6. Gao, F., C. Ruan, and W.J.M.C.F. Liu, High-strength hydrogel-based bioinks. 2019. 3(9): p. 1736-1746. 7. Li, H., et al., Review of 3D printable hydrogels and constructs. 2018. 159: p. 20-38. 8. Hospodiuk, M., et al., The bioink: a comprehensive review on bioprintable materials. 2017. 35(2): p. 217-239. 9. Guvendiren, M., et al., Designing biomaterials for 3D printing. 2016. 2(10): p. 1679-1693. 10. Gopinathan, J. and I.J.B.r. Noh, Recent trends in bioinks for 3D printing. 2018. 22(1): p. 11. 11. Jakab, K., et al., Tissue engineering by self-assembly and bio-printing of living cells. 2010. 2(2): p. 022001. 12. Rutz, A.L., P.L. Lewis, and R.N.J.M.B. Shah, Toward next-generation bioinks: Tuning material properties pre-and post-printing to optimize cell viability. 2017. 42(8): p. 563-570. 13. Ashley, S.J.M.E., Rapid prototyping systems. 1991. 113(4): p. 34. 14. Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing technologies. Vol. 17. 2014: Springer. 15. Gebhardt, A., Understanding additive manufacturing. 2011. 16. Kang, H.-W., et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. 2016. 34(3): p. 312-319. 17. Chang, C.C., et al., Direct‐write bioprinting three‐dimensional biohybrid systems for future regenerative therapies. 2011. 98(1): p. 160-170. 18. Kjar, A. and Y.J.P. Huang, Application of micro-scale 3D printing in pharmaceutics. 2019. 11(8): p. 390. 19. Jin, Y., et al., Self-supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air. 2017. 9(20): p. 17456-17465. 20. Zhuang, P., et al., Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. 2019. 14(6): p. e0216776. 21. Campos, D.F.D., et al., Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. 2012. 5(1): p. 015003. 22. Wu, W., A. DeConinck, and J.A.J.A.m. Lewis, Omnidirectional printing of 3D microvascular networks. 2011. 23(24): p. H178-H183. 23. Jin, Y., et al., Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures. 2016. 8(2): p. 025016. 24. Du, Z., X. Yu, and Y.J.C.C.L. Han, Inkjet printing of viscoelastic polymer inks. 2018. 29(3): p. 399-404. 25. Jin, Y., et al., Study of extrudability and standoff distance effect during nanoclay-enabled direct printing. 2018. 1(2): p. 123-134. 26. Hausmann, M.K., et al., Dynamics of cellulose nanocrystal alignment during 3D printing. 2018. 12(7): p. 6926-6937. 27. Dávila, J.L. and M.A.J.T.I.J.o.A.M.T. d’Ávila, Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing. 2019. 101(1-4): p. 675-686. 28. Courtney, T.H., Mechanical behavior of materials. 2005: Waveland Press. 29. Eggers, J. and E.J.R.o.p.i.p. Villermaux, Physics of liquid jets. 2008. 71(3): p. 036601. 30. Flügge, W., Viscoelasticity. 2013: Springer Science Business Media. 31. Gao, T., et al., Optimization of gelatin–alginate composite bioink printability using rheological parameters: a systematic approach. 2018. 10(3): p. 034106. 32. Kuo, C., et al., Printability of Hydrogel Composites Using Extrusion-Based 3D Printing and Post-Processing with Calcium Chloride. 2019. 5: p. 051. 33. Duty, C., et al., What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. 2018. 35: p. 526-537. 34. Driessen, T., et al., Stability of viscous long liquid filaments. 2013. 25(6): p. 062109. 35. Rao, R.B., et al., Microfabricated deposition nozzles for direct‐write assembly of three‐dimensional periodic structures. 2005. 17(3): p. 289-293. 36. Smay, J.E., J. Cesarano, and J.A.J.L. Lewis, Colloidal inks for directed assembly of 3-D periodic structures. 2002. 18(14): p. 5429-5437. 37. Morrison, I.J.K.O.E.o.C.T., Dispersions. 2000. 38. Mewis, J., N.J.J.A.i.C. Wagner, and I. Science, Thixotropy. 2009. 147: p. 214-227. 39. Peak, C.W., et al., Nanoengineered colloidal inks for 3D bioprinting. 2018. 34(3): p. 917-925. 40. Ganji, F., F.S. Vasheghani, and F.E. VASHEGHANI, Theoretical description of hydrogel swelling: a review. 2010. 41. Holback, H., Y. Yeo, and K. Park, Hydrogel swelling behavior and its biomedical applications, in Biomedical Hydrogels. 2011, Elsevier. p. 3-24. 42. Gemeinhart, R.A., H. Park, and K.J.P.f.a.t. Park, Pore structure of superporous hydrogels. 2000. 11(8‐12): p. 617-625. 43. Lee, K.Y. and D.J.J.P.i.p.s. Mooney, Alginate: properties and biomedical applications. 2012. 37(1): p. 106-126. 44. Ferreira, A.M., et al., Collagen for bone tissue regeneration. 2012. 8(9): p. 3191-3200. 45. Xu, Y., et al., Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. 2017. 177: p. 210-216. 46. Wang, N., X.S.J.P.d. Wu, and technology, Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. 1997. 2(2): p. 135-142. 47. Gómez-Guillén, M.C., et al., Structural and physical properties of gelatin extracted from different marine species: a comparative study. 2002. 16(1): p. 25-34. 48. Gao, C., et al., Preparation and controlled degradation of oxidized sodium alginate hydrogel. 2009. 94(9): p. 1405-1410. 49. Pourjavadi, A. and M.J.E.P.J. Kurdtabar, Collagen-based highly porous hydrogel without any porogen: Synthesis and characteristics. 2007. 43(3): p. 877-889. 50. Shah, C.B. and S.M.J.J.o.a.p.s. Barnett, Swelling behavior of hyaluronic acid gels. 1992. 45(2): p. 293-298. 51. Collins, M.N. and C.J.J.o.A.P.S. Birkinshaw, Investigation of the swelling behavior of crosslinked hyaluronic acid films and hydrogels produced using homogeneous reactions. 2008. 109(2): p. 923-931. 52. Rohindra, D.R., et al., Swelling properties of chitosan hydrogels. 2004. 22(1): p. 32-35. 53. Chung, J.H., et al., Bio-ink properties and printability for extrusion printing living cells. 2013. 1(7): p. 763-773. 54. Duan, B., et al., Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. 2014. 10(5): p. 1836-1846. 55. Hong, S., et al., 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. 2015. 27(27): p. 4035-4040. 56. Yao, C., et al., Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions. 2016. 6(95): p. 92648-92654. 57. Sun, B., et al., Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. 2015. 22(2): p. 1135-1146. 58. Larsson, P.A., J.J. Kochumalayil, and L. Wågberg. Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose. in 15th Fundamental Research Symposium: Advances in Pulp and Paper Research. 2013. The Pulp and Paper Fundamental Research Society Cambridge, UK. 59. Pilavtepe, M., et al., Macro-and microscale structure formation and aging in different arrested states of Laponite dispersions. 2018. 62(2): p. 593-605. 60. Walther, A., et al., Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. 2010. 10(8): p. 2742-2748. 61. Yuan, Z., et al., Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films. 2014. 102: p. 431-437. 62. Chiu, C.-W. and J.-J.J.P.i.P.S. Lin, Self-assembly behavior of polymer-assisted clays. 2012. 37(3): p. 406-444. 63. Zhang, B., et al., A self-assembled, nacre-mimetic, nano-laminar structure as a superior charge dissipation coating on insulators for HVDC gas-insulated systems. 2019. 11(39): p. 18046-18051. 64. Podsiadlo, P., et al., Ultrastrong and stiff layered polymer nanocomposites. 2007. 318(5847): p. 80-83. 65. Sirviö, J.A., et al., Composite films of poly (vinyl alcohol) and bifunctional cross-linking cellulose nanocrystals. 2015. 7(35): p. 19691-19699. 66. Huang, R., et al., Preparation of dialdehyde cellulose nanocrystal as an adsorbent for creatinine. 2016. 94(8): p. 1435-1441. 67. Grosskopf, A.K., et al., Viscoplastic matrix materials for embedded 3D printing. 2018. 10(27): p. 23353-23361. 68. Jin, Y., et al., Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication. 2017. 80: p. 313-325. 69. Rutz, A.L., et al., A multimaterial bioink method for 3D printing tunable, cell‐compatible hydrogels. 2015. 27(9): p. 1607-1614. 70. Khalil, S., W.J.M.S. Sun, and E. C, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. 2007. 27(3): p. 469-478. 71. Sun, H., et al., Self-standing and shape-memorable UV-curing epoxy polymers for three-dimensional (3D) continuous-filament printing. 2018. 6(12): p. 2996-3003. 72. Habib, A., et al., 3D printability of alginate-carboxymethyl cellulose hydrogel. 2018. 11(3): p. 454. 73. Habib, M.A. and B.J.J.o.M.P. Khoda, Support grain architecture design for additive manufacturing. 2017. 29: p. 332-342. 74. Ahlfeld, T., et al., Development of a clay based bioink for 3D cell printing for skeletal application. 2017. 9(3): p. 034103. 75. Bettinger, C.J., R. Langer, and J.T.J.A.C.I.E. Borenstein, Engineering substrate topography at the micro‐and nanoscale to control cell function. 2009. 48(30): p. 5406-5415. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54417 | - |
dc.description.abstract | 直寫式3D生物列印技術,於近年來常被應用於組織工程領域,透過擠出成型的方式將生物材料塗佈於基材,以製備三維結構的生醫骨架,得以用於複雜立體結構的組織與器官再生,其中水凝膠因具備高度生物相容性、生物可分解、高孔隙度等特性,經常被選作生物墨水的主要成分,並結合生物列印技術而產生多種應用。然而將水凝膠應用於3D列印,必須克服水凝膠流動性太強、與支撐力薄弱等問題,此外所印製出的結構,也必須具備高精度、抗膨潤、高機械強度、高細胞活性等特性,才能提供細胞貼附生長所需的支撐力,並維持形狀。常見的生物型水凝膠,包含海藻酸、膠原蛋白、玻尿酸、明膠等等,往往欠缺足夠的屈伏應力而無法順利成形固化,另外若透過化學交聯或後處理的方式提升機械性質,則往往犧牲凝膠的可印製性,並有可能影響細胞活性。 本研究則提出一種新型可3D列印的水凝膠製備方法,我們選用奈米黏土laponite作為主要原料,並提出其與醛基化奈米纖維素微晶的化學交聯機制,為了探討此種化學交聯對凝膠可印製特性的影響,我們調控醛基化奈米纖維素與奈米黏土的比例,探討不同比例下對凝膠流變性質、可印製性、結構精度、機械強度與膨潤特性等影響,實驗結果可知在6%奈米黏土與1%醛基化奈米纖維素的比例下,具最佳的可印製性與結構精度,另外可提升約4倍的機械強度與降低約90%的膨潤現象。此種水凝膠省去前人印製水凝膠所需的後處理步驟,印製成品亦具備優良的結構穩定性與生物活性,可成功印製複雜立體結構。簡言之,本研究提出一種新型可印製水凝膠,並為3D生物列印技術拓展一條嶄新的道路。 | zh_TW |
dc.description.abstract | In recent years, direct-write 3D bioprinting has been used in the field of tissue engineering. Biomaterials are printed on substrates by extrusion method to fabricate three-dimensional biomedical scaffold, which can be applied in the regeneration of organs or tissues with complex structure. Among all biomaterials, hydrogel is usually chosen as the main component of bio-ink due to the high biocompatibility, biodegradability, high porosity and so forth. The combination between hydrogel and bioprinting technology is then generating various of applications. However, high fluidity and low self-supporting ability hinder the use of hydrogel in 3D printing. Moreover, the printed structure should possess high fidelity, anti-swelling behavior, high mechanical strength, high cell viability and so forth in order to provide supporting for cell adhesion and growth, while maintaining its shape. Commonly seen biogels, such as alginate, collagen, Hyaluronic acid, gelatin and so forth, are hard to solidify due to the lack of sufficient yield stress. However, increasing mechanical strength by chemical crosslinking or post-treatment sacrifices the printability of hydrogel and might influence the cell viability. In this thesis, a novel synthesis method is developed to formulate 3D printable hydrogel. We choose nanoclay, laponite, as the main component and propose a mechanism of crosslinking laponite and dialdehyde cellulose nanocrystal (DAC). To evaluate the influence of the chemical crosslinking on the printability of hydrogel, we adjust the ratio of laponite and DAC and analyze the influence of different compositions on rheology, printability, fidelity, mechanical strength, swelling behavior and so forth. The results show that the composition of 6% of laponite and 1% of DAC possesses the best printability and fidelity. Moreover, the mechanical strength is enhanced by 4 times and the swelling behavior is decreased by 90%. This method omits the complicated post-treatment that is essential for other printable hydrogels. The final printed structure possesses excellent structural stability and cell viability. The complicated hydrogel structure is then achieved. In summary, we propose a new printable hydrogel and pave the way for the development of 3D bioprinting technology. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:55:42Z (GMT). No. of bitstreams: 1 U0001-0308202015031900.pdf: 5298424 bytes, checksum: a7bcac7c2fdcff295e77843a5a1cb276 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 中文摘要 ii ABSTRACT ii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1研究背景 1 1.2論文架構 3 1.3文獻回顧 4 1.3.1 3D積層列印 4 1.3.1-1 物件加工方法 4 1.3.1-2 3D列印原理 4 1.3.1-3 3D列印在組織工程學的運用 5 1.3.1-4 3D生物列印技術(3D bioprinting) 6 1.3.2 生物凝膠墨水 10 1.3.2-1 凝膠的可印製性(printability) 10 1.3.2-2 凝膠的黏彈體特性(viscoelasticity) 12 1.3.2-3 凝膠的觸變性(thixotropy) 16 1.3.2-4 凝膠的膨潤特性(swelling behavior) 17 1.3.3 生物型凝膠 19 1.3.3-1 常見的生物型凝膠 20 1.3.3-2 新型生物凝膠 23 1.4研究動機與目的 27 第二章 實驗系統程序 28 2.1 實驗藥品與儀器介紹 28 2.1.1 實驗藥品 28 2.1.2 實驗儀器 29 2.2 實驗流程 30 2.2.1 醛基化奈米纖維素微晶(dialdehyde cellulose nanocrystal, DAC)之製備 30 2.2.2 DAC氧化程度鑑定 31 2.2.3 Laponite/DAC 凝膠之製備 32 2.2.4 點膠機之操作 32 2.2.5 凝膠膨潤現象測試 33 2.2.6 細胞貼附生長與細胞活性(cell viability)測試 34 第三章 直寫式3D列印印製三維凝膠骨架 36 3.1 Laponite與DAC交聯機制分析 36 3.1.1 DAC化性分析 37 3.1.2 Laponite與DAC的交聯機制 39 3.2膠體組成與其流變特性 41 3.2.1 Laponite濃度對凝膠流變性與可印製性之影響 41 3.2.2 DAC濃度對凝膠流變性與可印製性的影響 45 3.3三維凝膠結構的列印與分析 50 3.3.1 螺桿點膠機的參數控制 50 3.3.2 凝膠結構的支撐力分析 52 3.3.3 凝膠結構的機械強度測試 54 3.3.4 凝膠結構之膨潤現象與體積變化 57 3.3.5 直寫式3D列印印製凝膠立體結構 60 3.3.6 細胞活性與貼附度測試 62 第四章 結論與未來展望 66 參考資料 67 | |
dc.language.iso | zh-TW | |
dc.title | 可3D列印的奈米黏土水凝膠於生醫骨架的應用 | zh_TW |
dc.title | 3D Printable Nanoclay Based Hydrogel for Biomedical Scaffold | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張豐丞(Feng-Cheng Chang),游加欣(Jia-Shing Yu),邱智瑋(Chih-Wei Chiu) | |
dc.subject.keyword | 3D生物列印,奈米黏土,交聯機制,水凝膠,生醫骨架, | zh_TW |
dc.subject.keyword | 3D bioprinting,nanoclay,crosslinking mechanism,hydrogel,biomedical scaffold, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU202002276 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0308202015031900.pdf 目前未授權公開取用 | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。