Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54408
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor郭大維(Tei-Wei Kuo)
dc.contributor.authorYu-Ming Changen
dc.contributor.author張育銘zh_TW
dc.date.accessioned2021-06-16T02:55:11Z-
dc.date.available2020-08-07
dc.date.copyright2015-08-07
dc.date.issued2015
dc.date.submitted2015-07-09
dc.identifier.citation[1] Amir Ban. Flash File System. US Patent 5,404,485.
[2] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. Introduction to Flash Memory. Proceedings of the IEEE, 91(4):489–502, 2003.
[3] Kuo-Pin Chang, Hang-Ting Lue, Chih-Ping Chen, Chieh-Fang Chen, Yan-Ru Chen, Yi-Hsuan Hsiao, Chih-Chang Hsieh, Yen-Hao Shih, Tahone Yang, Kuang-Chao Chen, Chun-Hsiung Hung, and Chih-Yuan Lu. Memory Architecture of 3D Vertical Gate (3DVG) NAND Flash Using Plural Island-Gate SSL Decoding Method and Study of it’s Program Inhibit Characteristics. In Proc. of the IEEE IMW, pages 1–4, 2012.
[4] Li-Pin Chang. On Efficient Wear Leveling for Large-scale Flash-memory Storage Systems. In Proc. of the ACM SAC, pages 1126–1130, 2007.
[5] Li-Pin Chang and Tei-Wei Kuo. An Adaptive Striping Architecture for Flash Memory Storage Systems of Embedded Systems. In Proc. of the IEEE RTAS, pages 187–196, 2002.
[6] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Endurance Enhancement of Flash-Memory Storage, Systems: An Efficient Static Wear Leveling Design. In Proc. of the IEEE/ACM DAC, pages 212–217, 2007.
[7] Yuan-Hao Chang, Ming-Chang Yang, Tei-Wei Kuo, and Ren-Hung Hwang. A Reliability Enhancement Design Under the Flash Translation Layer for MLC-based Flash-memory Storage Systems. ACM Transactions on Embedded Computing Systems, 13(1):10:1–10:28, 2013.
[8] Bainan Chen, Xinmiao Zhang, and Zhongfeng Wang. Error Correction for Multi-level NAND Flash Memory Using Reed-Solomon Codes. In Proc. of the IEEE SiPS, pages 94–99, 2008.
[9] Chih-Ping Chen, Hang-Ting Lue, Kuo-Pin Chang, Yi-Hsuan Hsiao, Chih-Chang Hsieh, Shih-Hung Chen, Yen-Hao Shih, Kuang-Yeu Hsieh, Tahone Yang, Kuang-Chao Chen, and Chih-Yuan Lu. A Highly Pitch Scalable 3D Vertical Gate (VG) NAND Flash Decoded by A Novel Self-aligned Independently Controlled Double Gate (IDG) String Select Transistor (SSL). In Proc. of the IEEE VLSIT, pages 91–92, 2012.
[10] M-L Chiang and R-C Chang. Cleaning Policies in Mobile Computers Using Flash Memory. Journal of Systems and Software, 48(3):213–231, 1999.
[11] Hyunjin Cho, Dongkun Shin, and Young Ik Eom. KAST: K-Associative Sector Translation for NAND Flash Memory in Real-time Systems. In Proc. of the IEEE/ACM DATE, pages 507–512, 2009.
[12] Y.S. Cho, I.H. Park, S.Y. Yoon, N.H. Lee, S.H. Joo, K.-W. Song, K. Choi, J.-M. Han, K.H. Kyung, and Y.-H. Jun. Adaptive Multi-Pulse Program Scheme Based on Tunneling Speed Classification for Next Generation Multi-Bit/Cell NAND FLASH. IEEE Journal of Solid-State Circuits, 48(4):948–959, 2013.
[13] Guiqiang Dong, Ningde Xie, and Tong Zhang. On the Use of Soft-Decision Error-Correction Codes in NAND Flash Memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(2):429–439, 2011.
[14] A. Ghetti, C. Monzio Compagnoni, A.S. Spinelli, and A. Visconti. Comprehensive Analysis of Random Telegraph Noise Instability and Its Scaling in Deca-Nanometer Flash Memories. IEEE Transactions on Electron Devices, 56(8):1746–1752, 2009.
[15] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel, and J.K. Wolf. Characterizing Flash Memory: Anomalies, Observations, and Applications. In Proc. of the IEEE/ACM MICRO, pages 24–33, 2009.
[16] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: A Flash Translation Layer Employing Demand-based Selective Caching of Page-level Address Mappings. In Proc. of the ACM ASPLOS, pages 229–240, 2009.
[17] Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. Efficient Identification of Hot Data for Flash Memory Storage Systems. ACM Transactions on Storage, 2(1):22–40, 2006.
[18] Chun-Hsiung Hung, Hang-Ting Lue, Kuo-Pin Chang, Chih-Ping Chen, Yi-Hsuan Hsiao, Shih-Hung Chen, Yen-Hao Shih, Kuang-Yeu Hsieh, M. Yang, J. Lee, Szu-Yu Wang, T. Yang, Kuang-Chao Chen, and Chih-Yuan Lu. A Highly Scalable Vertical Gate (VG) 3D NAND Flash with Robust Program Disturb Immunity Using a Novel PN Diode Decoding Structure. In Proc. of the IEEE VLSIT, pages 68–69, 2011.
[19] D. Ielmini, A.S. Spinelli, A.L. Lacaita, R. Leone, and A. Visconti. Localization of SILC in Flash Memories After Program/Erase Cycling. In Proc. of the IEEE IRPS, pages 1–6, 2002.
[20] Soojun Im and Dongkun Shin. Flash-Aware RAID Techniques for Dependable and High-Performance Flash Memory SSD. IEEE Transactions on Computers, 60(1): 80–92, 2011.
[21] A. Jagmohan, M. Franceschini, and L. Lastras. Write Amplification Reduction in NAND Flash Through Multi-write Coding. In Proc. of the IEEE MSST, pages 1–6, 2010.
[22] Jaehoon Jang, Han-Soo Kim, Wonseok Cho, Hoosung Cho, Jinho Kim, Sun Il Shim, Younggoan Jang, Jae-Hun Jeong, Byoung-Keun Son, Dong Woo Kim, Kihyun, Jae-Joo Shim, Jin Soo Lim, Kyoung-Hoon Kim, Su Youn Yi, Ju-Young Lim, Dewill Chung, Hui-Chang Moon, Sungmin Hwang, Jong-Wook Lee, Yong-Hoon Son, U-In Chung, and Won-Seong Lee. Vertical Cell Array Using TCAT (Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory. In Proc. of the IEEE VLSIT, pages 192–193, 2009.
[23] R. Katsumata, M. Kito, Y. Fukuzumi, M. Kido, H. Tanaka, Y. Komori, M. Ishiduki, J. Matsunami, T. Fujiwara, Y. Nagata, Li Zhang, Y. Iwata, R. Kirisawa, H. Aochi, and A. Nitayama. Pipe-shaped BiCS Flash Memory with 16 Stacked Layers and Multi-level-cell Operation for Ultra High Density Storage Devices. In Proc. of the IEEE VLSIT, pages 136–137, 2009.
[24] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A Flash-Memory Based File System. In Usenix Winter, pages 155–164, 1995.
[25] Jesung Kim, Jong Min Kim, Sam H Noh, Sang Lyul Min, and Yookun Cho. A Spaceefficient Flash Translation Layer for CompactFlash Systems. IEEE Transactions on Consumer Electronics, 48(2):366–375, 2002.
[26] Jiyoung Kim, A.J. Hong, Sung Min Kim, E.B. Song, Jeung Hun Park, Jeonghee Han, Siyoung Choi, Deahyun Jang, Joo Tae Moon, and K.L. Wang. Novel Vertical-Stacked-Array-Transistor (VSAT) for Ultra-high-density and Cost-effective NAND Flash Memory Devices and SSD (Solid State Drive). In Proc. of the IEEE VLSIT, pages 186–187, 2009.
[27] Wonjoo Kim, Sangmoo Choi, Junghun Sung, Taehee Lee, Chulmin Park, Hyoungsoo Ko, Juhwan Jung, Inkyong Yoo, and Yoondong Park. Multi-layered Vertical Gate NAND Flash Overcoming Stacking Limit for Terabit Density Storage. In Proc. of the IEEE VLSIT, pages 188–189, 2009.
[28] Chang-Hyun Lee, Jungdal Choi, Youngwoo Park, Changseok Kang, Byeong-In Choi, Hyunjae Kim, Hyunsil Oh, and Won-Seong Lee. Highly Scalable NAND Flash Memory with Robust Immunity to Program Disturbance Using Symmetric Inversion-type Source and Drain Structure. In Proc. of the IEEE VLSIT, pages 118–119, 2008.
[29] Jae-Duk Lee, Jeong-Hyuk Choi, Donggun Park, and Kinam Kim. Effects of Interface Trap Generation and Annihilation on the Data Retention Characteristics of Flash Memory Cells. IEEE Transactions on Device and Materials Reliability, 4(1):110–117, 2004.
[30] Sang-Won Lee, Won-Kyoung Choi, and Dong-Joo Park. FAST: An Efficient Flash Translation Layer for Flash Memory. In Emerging Directions in Embedded and Ubiquitous Computing, pages 879–887. Springer, 2006.
[31] Sungjin Lee, Taejin Kim, Kyungho Kim, and Jihong Kim. Lifetime Management of Flash-based SSDs Using Recovery-aware Dynamic Throttling. In Proc. of the FAST, page 26, 2012.
[32] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. LAST: Localityaware Sector Translation for NAND Flash Memory-based Storage Systems. ACM SIGOPS Operating Systems Review, 42(6):36–42, 2008.
[33] Wei Liu, Junrye Rho, and Wonyong Sung. Low-Power High-Throughput BCH Error Correction VLSI Design for Multi-Level Cell NAND Flash Memories. In Proc. of the IEEE SiPS, pages 303–308, 2006.
[34] Chih-Yuan Lu, Kuang-Yeu Hsieh, and Rich Liu. Future Challenges of Flash Memory Technologies. Microelectronic engineering, 86(3):283–286, 2009.
[35] Hang-Ting Lue, Pei-Ying Du, Chih-Ping Chen, Wei-Chen Chen, Chih-Chang Hsieh, Yi-Hsuan Hsiao, Yen-Hao Shih, and Chih-Yuan Lu. Radically Extending the Cycling Endurance of Flash Memory (to > 100M Cycles) by Using Built-in Thermal Annealing to Self-heal the Stress-Induced Damage. In Proc. of the IEEE IEDM, pages 9.1.1–9.1.4, 2012.
[36] Hang-Ting Lue, Tzu-Hsuan Hsu, Yi-Hsuan Hsiao, S.P. Hong, M.T. Wu, F.H. Hsu, N.Z. Lien, Szu-Yu Wang, Jung-Yu Hsieh, Ling-Wu Yang, T. Yang, Kuang-Chao Chen, Kuang-Yeu Hsieh, and Chih-Yuan Lu. A Highly Scalable 8-layer 3D Vertical-gate (VG) TFT NAND Flash Using Junction-free Buried Channel BE-SONOS Device. In Proc. of the IEEE VLSIT, pages 131–132, 2010.
[37] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz, Qingru Meng, N. Righos, and Jie Wu. Flash EEPROM Threshold Instabilities Due to Charge Trapping During Program/Erase Cycling. IEEE Transactions on Device and Materials Reliability, 4(3):335–344, 2004.
[38] N. Mielke, H.P. Belgal, A. Fazio, Qingru Meng, and N. Righos. Recovery Effects in the Distributed Cycling of Flash Memories. In Proc. of the IEEE IRPS, pages 29–35, 2006.
[39] Vidyabhushan Mohan, Sriram Sankar, Sudhanva Gurumurthi, and WA Redmond. reFresh SSDs: Enabling High Endurance, Low Cost Flash in Datacenters. Univ. of Virginia, Tech. Rep. CS-2012-05, 2012.
[40] Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi, and Mircea R. Stan. How I Learned to Stop Worrying and Love Flash Endurance. In Proc. of the HotStorage, pages 3–3, 2010.
[41] C. Monzio Compagnoni, C. Miccoli, R. Mottadelli, S. Beltrami, M. Ghidotti, A.L. Lacaita, A.S. Spinelli, and A. Visconti. Investigation of the Threshold Voltage Instability After Distributed Cycling in Nanoscale NAND Flash Memory Arrays. In Proc. of the IEEE IRPS, pages 604–610, 2010.
[42] M. Murugan and D.H.-C. Du. Rejuvenator: A Static Wear Leveling Algorithm for NAND Flash Memory with Minimized Overhead. In Proc. of the IEEE MSST, pages 1–12, 2011.
[43] Ki-Tae Park, Myounggon Kang, Doogon Kim, Soon-Wook Hwang, Byung-Yong Choi, Yeong-Taek Lee, Changhyun Kim, and Kinam Kim. A Zeroing Cell-to-Cell Interference Page Architecture With Temporary LSB Storing and Parallel MSB Program Scheme for MLC NAND Flash Memories. IEEE Journal of Solid-State Circuits, 43(4):919–928, 2008.
[44] Ki-Tae Park, Jin man Han, Daehan Kim, Sangwan Nam, Kihwan Choi, Min-Su Kim, Pansuk Kwak, Doosub Lee, Yoon-He Choi, Kyung-Min Kang, Myung-Hoon Choi, Dong-Hun Kwak, Hyun wook Park, Sang won Shim, Hyun-Jun Yoon, Doohyun Kim, Sang won Park, Kangbin Lee, Kuihan Ko, Dong-Kyo Shim, Yang-Lo Ahn, Jeunghwan Park, Jinho Ryu, Donghyun Kim, Kyungwa Yun, Joonsoo Kwon, Seunghoon Shin, Dongkyu Youn, Won-Tae Kim, Taehyun Kim, Sung-Jun Kim, Sungwhan Seo, Hyung-Gon Kim, Dae-Seok Byeon, Hyang-Ja Yang, Moosung Kim, Myong-Seok Kim, Jinseon Yeon, Jaehoon Jang, Han-Soo Kim, Woonkyung Lee, Duheon Song, Sungsoo Lee, Kye-Hyun Kyung, and Jeong-Hyuk Choi. 19.5 Threedimensional 128Gb MLC Vertical NAND Flash-memory with 24-WL Stacked Layers and 50MB/s High-speed Programming. In Proc. of the IEEE ISSCC, pages 334–335, 2014.
[45] Sang-Hoon Park, Seung-Hwan Ha, Kwanhu Bang, and Eui-Young Chung. Design and Analysis Of Flash Translation Layers for Multi-channel NAND Flash-based Storage Devices. IEEE Transactions on Consumer Electronics, 55(3):1392–1400, 2009.
[46] Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, and Yong Guan. MNFTL: An Efficient Flash Translation Layer for MLC NAND Flash Memory Storage Systems. In Proc. of the IEEE/ACM DAC, pages 17–22, 2011.
[47] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a Log-structured File System. ACM Transactions on Computer Systems, 10(1):26–52, 1992.
[48] Joo Yun Seo, Yoon Kim, Se-Hwan Park, Wandong Kim, Do-Bin Kim, Jong-Ho Lee, Hyungcheol Shin, and Byung-Gook Park. Investigation Into the Effect of The Variation of Gate Dimensions on Program Characteristics in 3D NAND Flash Array. In Proc. of the IEEE SNW, pages 1–2, 2012.
[49] Keon-Soo Shim, Eun-Seok Choi, Sung-Wook Jung, Se-Hoon Kim, Hyun-Seung Yoo, Kwang-Sun Jeon, Han-Soo Joo, Jung-Seok Oh, Yoon-Soo Jang, Kyung-Jin Park, Sang-Moo Choi, Sang-Bum Lee, Jeong-Deog Koh, Ki-Hong Lee, Ju-Yeab Lee, Sang-Hyun Oh, Seung-Ho Pyi, Gyu-Seog Cho, Sung-Kye Park, Jin-Woong Kim, Seok-Kiu Lee, and Sung-Joo Hong. Inherent Issues and Challenges of Program Disturbance of 3D NAND Flash Cell. In Proc. of the IEEE IMW, pages 1–4, 2012.
[50] Seung-Hwan Shin, Dong-Kyo Shim, Jae-Yong Jeong, Oh-Suk Kwon, Sang-Yong Yoon, Myung-Hoon Choi, Tae-Young Kim, Hyun-Wook Park, Hyun-Jun Yoon, Young-Sun Song, Yoon-Hee Choi, Sang-Won Shim, Yang-Lo Ahn, Ki-Tae Park, Jin-Man Han, Kye-Hyun Kyung, and Young-Hyun Jun. A New 3-bit Programming Algorithm Using SLC-to-TLC Migration for 8MB/s High Performance TLC NAND Flash Memory. In Proc. of the IEEE VLSIC, pages 132–133, 2012.
[51] YunSeung Shin. Non-volatile Memory Technologies for Beyond 2010. In Proc. of the IEEE VLSIC, pages 156–159, 2005.
[52] Takayuki Shinohara. Flash Memory Card with Block Memory Address Arrangement, 1999. US Patent 5,905,993.
[53] SNIA IOTTA Repository. http://iotta.snia.org/.
[54] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi, Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum, Jung-Hyuk Choi, Jang-Rae Kim, and Hyung-Kyu Lim. A 3.3 V 32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme. IEEE Journal of Solid-State Circuits, 30(11):1149–1156, 1995.
[55] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, and A. Nitayama. Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory. In Proc. of the IEEE VLSIT, pages 14–15, 2007.
[56] Tx58TEGxDCJTAX0 Datasheet. Toshiba America Electronic Components, Inc.
[57] Yi Wang, L.A.D. Bathen, Zili Shao, and N.D. Dutt. 3D-FlashMap: A Physicallocation-aware Block Mapping Strategy for 3D NAND Flash Memory. In Proc. of the IEEE DATE, pages 1307–1312, 2012.
[58] Qingsong Wei, Bozhao Gong, S. Pathak, B. Veeravalli, Lingfang Zeng, and K. Okada. WAFTL: A Workload Adaptive Flash Translation Layer with Data Partition. In Proc. of the IEEE MSST, pages 1–12, 2011.
[59] SungJin Whang, KiHong Lee, DaeGyu Shin, BeomYong Kim, MinSoo Kim, JinHo Bin, JiHye Han, SungJun Kim, BoMi Lee, YoungKyun Jung, SungYoon Cho, ChangHee Shin, HyunSeung Yoo, SangMoo Choi, Kwon Hong, S. Aritome, SungKi Park, and SungJoo Hong. Novel 3-dimensional Dual Control-gate with Surrounding Floating-gate (DC-SF) NAND Flash Cell for 1Tb File Storage application. In Proc.
of the IEEE IEDM, pages 29.7.1–29.7.4, 2010.
[60] Chin-Hsien Wu and Tei-Wei Kuo. An Adaptive Two-Level Management for the Flash Translation Layer in Embedded Systems. In Proc. of the IEEE/ACM ICCAD, pages 601–606, 2006.
[61] Qi Wu, Guiqiang Dong, and Tong Zhang. Exploiting Heat-accelerated Flash memory Wear-out Recovery to Enable Self-healing SSDs. In Proc. of the HotStorage, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54408-
dc.description.abstract過去幾年來,記憶體製造商持續地尋求增加快閃記憶體的密度以滿足對於儲存系統空間持續成長的需求。先進的製程微縮、多階式儲存技術、以及三維架構都是非常流行的方法來進一步地增加晶片的空間以及降低位元的成本。同時,它們也引起嚴重的可靠度問題,例如: 逐漸惡化的寫入干擾、更短的耐久度、以及更高的錯誤率。為了解決干擾問題,我們提出了一套干擾減緩方案來減緩寫入干擾所造成的負面效果,特別針對同一區塊內的干擾。尤其,此方案藉由分散不可避免的干擾錯誤到無效資料的快閃記憶體空間上來降低資料錯誤率,並考慮到三維快閃記憶體的實體架構。為了解決耐久度問題,我們基於自我修復的科技提出了平均修復設計來平均地分散每個區塊上的修復次數。平均修復的目標在於延長快閃記憶體的壽命而不會引起大量的有效資料搬移。為了解決高錯誤率的問題,一個類單階式寫入策略被提出來更有效地利用臨界電壓關係來表示多階式位元資訊,進而大大地提供一個更大的臨界電壓的可用範圍,接近於在單階式晶片上所觀察到的。此策略不但可以有效地減少潛在的錯誤率並可以改善晶片的存取效能。zh_TW
dc.description.abstractOver the past years, memory manufacturers are constantly seeking to increase flash memory density in order to fulfill the ever growing demand for storage capacity. Advanced process shrinking, Multi-Level-Cell technique, and even three dimension architecture are very popular approaches to further increase the chip capacity, as well as reduce the bit cost. At the same time, they also bring about serious reliability problems, e.g., deteriorated program disturbance, shorter endurance, and higher bit error rate (BER). To address the disturbance problem, we propose a emph{disturb-alleviation scheme} that can alleviate the negative effects caused by program disturb, especially inside a block. In particular, the scheme reduces the data error rate by distributing unavoidable disturbance errors over the flash-memory space of invalid data, with the considerations of the physical organization of 3D flash memory. To address the endurance problem, we propose emph{a heal-leveling design} that evenly distributes healing cycles to flash blocks based on the self-healing technology. The objective of heal-leveling is to extend the lifetime of flash memory without introducing a large amount of live-data copying overheads. To address the high BER problem, a emph{SLC-like programming strategy} is proposed to better exploit the threshold-voltage relationship to denote different Multi-Level-Cell bit information, which in turn drastically provides a larger available range of threshold voltage similar to that found in Single-Level-Cell chips. It could not only significantly reduce the potential bit error rate but also improve the access performance of chips.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:55:11Z (GMT). No. of bitstreams: 1
ntu-104-D00922001-1.pdf: 3154627 bytes, checksum: d3bb827ccef79b87992981d82f047276 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgment iii
中文摘要 v
Abstract vii
Contents ix
List of Figures xiii
List of Tables xv
1 Introduction 1
2 Related Work 5
2.1 The Designs of Flash Translation Layer . . . . . . . . . . . . . . . . . . 5
2.2 Self-healing Effects of Flash Memory . . . . . . . . . . . . . . . . . . . 6
2.3 Error Correction Code and Wear Leveling . . . . . . . . . . . . . . . . . 7
2.4 Program Disturbance on 3D Flash Memory . . . . . . . . . . . . . . . . 7
2.5 Existing Page Programming Strategies . . . . . . . . . . . . . . . . . . . 8
3 A Disturb-alleviation Scheme 11
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 A New Management Unit: Reliable Block . . . . . . . . . . . . . . . . . 16
3.3.1 Construction of the Reliable Blocks . . . . . . . . . . . . . . . . 16
3.3.2 Free Reliable Blocks . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Free Space Management and Operation Handling . . . . . . . . . . . . . 21
3.4.1 Free Space Management . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Operation Handling . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 28
4 A Heal-leveling Design 33
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Healing Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Adjustment and Freeze Procedures . . . . . . . . . . . . . . . . . . . . . 39
4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 45
5 An SLC-like Programming Strategy 49
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 SLC-like Programming Method . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Design Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Design Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 SLC-like Management Design . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1 SLC-like Module . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.2 The Handling of Read/Write Operations . . . . . . . . . . . . . . 59
5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 62
6 Conclusion Remarks 67
Bibliography 68
Curriculum Vitae 79
Publication List 81
dc.language.isoen
dc.subject頁面編程zh_TW
dc.subject快閃記憶體zh_TW
dc.subject三維快閃記憶體zh_TW
dc.subject儲存系統zh_TW
dc.subject可靠度zh_TW
dc.subject耐久度zh_TW
dc.subject位元錯誤率zh_TW
dc.subject修復zh_TW
dc.subject快閃記憶體zh_TW
dc.subject三維快閃記憶體zh_TW
dc.subject儲存系統zh_TW
dc.subject可靠度zh_TW
dc.subject耐久度zh_TW
dc.subject位元錯誤率zh_TW
dc.subject修復zh_TW
dc.subject頁面編程zh_TW
dc.subjectenduranceen
dc.subjectFlash memoryen
dc.subjectpage programmingen
dc.subjecthealingen
dc.subjectbit error rateen
dc.subjectFlash memoryen
dc.subject3D flash memoryen
dc.subjectstorage systemen
dc.subjectreliabilityen
dc.subjectenduranceen
dc.subjectbit error rateen
dc.subjecthealingen
dc.subjectpage programmingen
dc.subject3D flash memoryen
dc.subjectstorage systemen
dc.subjectreliabilityen
dc.title藉由干擾緩解、修復和編程技術以強化快閃記憶體儲存系統的可靠度zh_TW
dc.titleReliability Enhancement of Flash Memory Storage Systems via Disturb-Alleviation, Healing, and Programmingen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.coadvisor張原豪(Yuan-Hao Chang)
dc.contributor.oralexamcommittee陳銘憲(Ming-Syan Chen),楊佳玲(Chia-Lin Yang),洪士灝(Shih-Hao Hung),薛智文(Chih-Wen Hsueh),王成淵(Cheng-Yuan Wang)
dc.subject.keyword快閃記憶體,三維快閃記憶體,儲存系統,可靠度,耐久度,位元錯誤率,修復,頁面編程,zh_TW
dc.subject.keywordFlash memory,3D flash memory,storage system,reliability,endurance,bit error rate,healing,page programming,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2015-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
3.08 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved