Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54234
標題: SCM於微分控制方程式之分析及其結構應用
Governing Differential Equation Analysis and Its Structural Application by Using SCM
作者: Yen-Jeng Lee
李彥徵
指導教授: 吳賴雲
關鍵字: 楔形函數,
Spline function,
出版年 : 2015
學位: 碩士
摘要: 楔形函數配點法(Spline Collocation Method 簡稱SCM)是以楔形函數做為基底函數所構成之近似函數,搭配配點法以獲取最佳之近似函數。
SCM是由forward difference 所推導之Spline function ,並配合節點佈置(Collocation)的方式,所發展出的一種數值方法,再由各階之Spline function 整理製作出完整的B Spline Value Table而發展成為MSCM(Modified Spline Collocation Method)。
由於MSCM能以查表的方式輕易取代原本求解複雜微分方程的過程,在不侷限於任何形式的微分方程及邊界條件的情況下,僅需控制方程式便能得到令人滿意的近似解。因此嘗試導入各種不同組合的邊界條件,建立MSCM在各種控制方程式之數值分析模式,並編寫電腦程式分析驗證之,進而完整的處理各式微分控制方程式之問題。
由於工程問題所對應之控制方程式與邊界條件複雜,有時候很難推導其解析解。SCM的基本理論與計算步驟簡單,計算速度與收斂速度快,應用於所對應之控制方程式,求得近似解之數值分析時,不輸於其他數值方法,值得繼續發展楔形函數配點法分析更複雜的問題。
SCM數值分析方法已在結構學上各構件之分析都得到良好的驗證,本文研究主旨在以SCM來分析二階微分控制方程及其結構力學上之應用比較。本文將以不同案例包含二階常數、變係數微分控制方程式及結構力學等為分析對象,歸納出各適用性及準確性,並延伸探討SCM應用於Sturm-Liouville Problems之方法。
最後由此數值方法解得的答案,其誤差在容許範圍之情況下,使得此數值解能證明應用SCM近似模擬微分控制方程及其結構學應用問題之分析模式的優越性、準確性及參考價值,且符合高效率和多功能計算方法之需求,因而足以作為工程上之應用。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54234
全文授權: 有償授權
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.91 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved