請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉安義 | |
| dc.contributor.author | Meng-Ting Tsai | en |
| dc.contributor.author | 蔡孟庭 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:45:30Z | - |
| dc.date.available | 2017-07-20 | |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-19 | |
| dc.identifier.citation | 李佳靜。2010。加熱處理與介質研磨對山苦瓜抗氧化能力與降血糖功效之影響。臺灣大學食品科技研究所學位論文。
李烱源。2007。盒裝豆腐物化特性之研究。輔仁大學食品科學系碩士論文。 林曉楓。2014。超音波處理對黃豆及黑豆豆腐理化特性及凝膠的影響。輔仁大學食品科學系碩士論文。 陳時欣。2006。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。臺灣大學食品科技研究所學位論文。 Adams, D. J.; Butler, M. F.; Frith, W. J.; Kirkland, M.; Mullen, L.; Sanderson, P. A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter. 2009, 5, 1856-1862. Amin, I.; Mukhrizah, O. Antioxidant capacity of methanolic and water extracts prepared from food‐processing by‐products. J. Sci. Food Agric. 2006, 86, 778-784. Aruoma, O. I. Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol. 1994, 32, 671-683. Awika, J. M.; Rooney, L. W.; Wu, X., Prior, R. L.; Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem. 2003, 51, 6657-6662. Barnes, S. Effect of genistein on in vitro and in vivo models of cancer. J. Nutr. 1995, 125, 777-783. Becker, F. F. Inhibition of spontaneous hepatocarcinogenesis in C3H/HeN mice by Edi Pro A, an isolated soy protein. Carcinogenesis. 1981, 2, 1213-1214. Bednar, G. E.; Patil, A. R.; Murray, S. M.; Grieshop, C. M.; Merchen, N. R.; Fahey, G. C. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J. Nutr. 2001, 131, 276-286. Birt, D. F.; Hendrich, S.; Wang, W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol. Therap. 2001, 90, 157–177. B?hn, T.; Cuhra, M.; Traavik, T.; Sanden, M.; Fagan, J.; Primicerio, R. Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans. Food Chem. 2014, 153, 207-215. Bourne, M. C.; Clemente, M. G.; Banzon, J. Survey of suitability of thirty cultivars of soybeans for soymilk manufacture. J. Food Sci. 1976, 41, 1204–1208. Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995, 28, 25-30. Caldwell, C. R.; Britz, S. J.; Mirecki, R. M. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem. 2005, 53, 1125-1129. Cano, A.; Hernandez-Ruiz, J.; Garcia-Canovas, F.; Acosta, M.; Arnao, M. B. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 1998, 9, 196-202. Chen, C. W.; Ho, C. T. Antioxidant properties of polyphenols extracted from green and black teas. J. Food Lipids. 1995, 2, 35-46. Choi, Y.; Jeong, S. H.; Lee, J. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem. 2007, 103, 130–138 Chung, H.; Hogan, S.; Zhang, L.; Rainey, K.; Zhou, K. Characterization and comparison of antioxidant properties and bioactive components of Virginia soybeans. J. agric. food chem. 2008, 56, 11515-11519. Cook, N. C.; Samman, S. Flavonoids chemistry, metabolism, cardioprotective effects and dietary sources. J. Nutr. Biochem. 1996, 7, 66-76. Dubois, M.; Gilles, G. A.; Hamilton, J. K.; Rober, P. A.; Smith, F. Colorimetric estimation of carbohydrates by phenol sulphuric acid method. Anal. Chem. 1956, 28, 350-356. Food and Drug Administration. FDA approves new health claim for soy protein and coronary heart disease. 1999, FDA Talk Paper http://www. fda. gov/bbs/topics/ANSWERS/ANS00980. html. Freeman, B. A.; Crapo, J. D. Biology of disease: free radicals and tissue injury. Lab. Invest. 1982, 47, 412-426. Garcia, M. C.; Torre, M.; Marina, M. L.; Laborda, F.; Rodriquez, A. R. Composition and characterization of soyabean and related products. Crit. Rev. Food Sci. Nutr. 1997, 37, 361-391. Golbitz, P. Traditional soyfoods: processing and products. J. nutri. 1995, 570-572. Goñi, I.; Martin-Carrón, N. In vitro fermentation and hydration properties of commercial dietary fiber-rich supplements. NUTR RES. 1998, 18, 1077-1089. Grooms, K. N.; Ommerborn, M. J.; Pham, D. Q.; Djousse, L.; Clark, C. R. Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999-2010. Am. J. Med. 2013, 126, 1059-1067. Gumbmann, M. R.; Dugan, G. M.; Spangler, W. L.; Baker, E. C.; Rackis, J. J. Pancreatic response in rats and mice to trypsin inhibitors from soy and potato after short-and long-term dietary exposure. J. Nutr. 1989, 119, 1598-1609. Guillon, F.; Champ, M. J. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br. J. Nutr. 2002, 88, 293-306. Guo, S. T.; Ono, T. The Role of Composition and content of protein particles in soymilk on tofu curding by glucono‐δ‐lactone or calcium sulfate. J. Food Sci. 2005, 70, 258-262. Hackler, L. R.; BUREN, J.; Steinkraus, K. H.; Rawi, I.; Hand, D. B. Effect of heat treatment on nutritive value of soymilk protein fed to weanling rats. J Food Sci. 1965, 30, 723-728. Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, 4th ed. Oxford University Press: New York. 2007. Ham, W. W.; Sandstedt, R. M.; Mussehl, F. E. The proteolytic inhibiting substance in the extract from unheated soybean meal and its effect upon growth in chicks. J. Biol. Chem. 1945, 161,635-642. Han, K. K.; Soares Jr, J. M.; Haidar, M. A.; De Lima, G. R.; Baracat, E. C. Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstet. Gynecol. 2002, 99, 389-394. Hashizume, K.; Nakamura, N.; Watanabe, T. Influence of ionic strength on conformation changes of soybean proteins caused by heating, and relationship of its conformation changes to gel formation. Agric. Biol. Chem. 1975, 39, 1339-1347. Head, K.A. Isoflavones and other soy constitutents in human health and disease. Alt. Med. Rev. 1997, 2, 433–450. Hendrich, S.; Wang, G. J.; Lin, H. K.; Xu, X.; Twe, B. Y.; Wang, H. J. Isoflavone metabolism and bioavailability. In Antioxidant Status, Diet, Nutrition and Health. Papas, A. M., Ed. CRC: Boca Raton, FL, USA, 1999, 211–230. Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin sulphuric acid. Planta Med. 1976, 29, 116–122. Hoeck, J. A.; Fehr, W. R.; Murphy, P. A.; Welke, G. A. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 2000, 40, 48–51. Hu, S. A.; Tish Knobf, M. T. Risks and benefits of soy isoflavones for breast cancer survivors. Oncol. Nurs. Forum. 2004, 31, 249-263. Hymowitz, T.; Collins, F. I. Variability of sugar content in seed of Glycine max (L.) Merrill and G. soja Sieb. and Zucc. Agron. J. 1974, 66, 239-240. Ishihara, M.; Singh, H.; Chung, G.; Tam, C. Content composition and antioxidant activity of isoflavones in commercial and homemade soymilk and tofu. J. Sci. Food Agric. 2007, 87, 2844-2852. Ismail, B.; Hayes, K. β-Glycosidase activity toward different glycosidic forms of isoflavones. J. Agric. Food Chem. 2005, 53, 4918–4924. Jackson, C. J.; Dini, J. P.; Lavandier, C.; Rupasinghe, H. P. V.; Faulkner, H.; Poysa, V.; DeGrandis, S. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochem. 2002, 37, 1117-1123. Jackson, M.; Mantsh, H. H. Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies. Biochim. Biophys. Acta. 1992, 1118, 139–143. Jacob, R. A. Nutrition, health and antioxidants. Inform. 1994, 5, 1271-1275. Kakade, M. L.; Rackis, J. J.; McGhee, J. E.; Puski, G. Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem. 1974, 51, 376–382. Kawamura, S. Isolation and determination of sugars from the cotyledon, hull, and hypocotyls of soybeans of selected varieties. Technical Bulletin (Vol. 15). Kagawa University: Japan, 1967. Kao, F. J.; Su, N. W.; Lee, M. H. Effect of calcium sulfate concentration in soymilk on the microstructure of firm tofu and the protein constitutions in tofu whey. J. Agric. Food Chem. 2003, 51, 6211–6216. Kao, T. H.; Chen, B. H. Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem. 2006, 54, 7544-7555. Kao, T. H.; Lu, Y. F.; Hsieh, H. C.; Chen, B. H. Stability of isoflavone glucosides during processing of soymilk and tofu. Food Res. Int. 2004, 37, 891-900. Kehrer, J. P. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 1993, 23, 21-48. King, R. A.; Bignell, C. M. Concentrations of isoflavone phytoestrogens and their glucosides in Australian soya beans and soya foods. Aust. J. Nutr. Diet. 2000, 57, 70-78. Kim, J. J.; Kim, H. K.; Hahn, S. J.; Chung, I. M. Changing soybean isoflavone composition and concentrations under two different storage conditions over three years. Food Res. Int. 2005, 38, 435–444. Klose, A. A.; Hill, B.; Fevold, H. L. Presence of a growth inhibiting substance in raw soybean. Proc. Soc. Exp. Biol. Med. 1946, 62, 10-12. Kohyama, K.; Sano, Y.; Doit, E. Rheological characteristics and gelation mechanism of tofu (soybean curd). J. Agric. Food Chem. 1995, 43, 1808–1812. Kumar, V.; Rani, A.; Solanki, S.; Hussain, S. M. Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J. Food Compos. Anal. 2006, 19, 188-195. Kuo, H. Y.; Chen, S. H.; Yeh, A. I. Preparation and physicochemical properties of whole-Bean Soymilk. J. Agric. Food Chem. 2014, 62, 742-749. Kwade, A.; Blecher, L.; Schwedes , J. Motion and stress intensity of grinding beads in a stirred media mill. Part 2: Stress intensity and its effect on comminution. Powder Technol. 1996, 86, 69-76. Laskowski Jr, M.; Kato, I. Protein inhibitors of proteinases. Ann. Rev. Biochem. 1980, 49, 593-626. Lawrence, A.; Johnson, P. J.; White, R. G. Soybeans: chemistry, production, processing, and utilization. AOCS Press: Urbana, IL, 2008. Le Bail, J. C.; Pouget, C.; Fagnere, C.; Basly, J. P.; Chulia, A. J.; Habrioux, G. Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities. Life Sci. 2001, 68, 751-761. Lei, M. G.; Bessette, R.; Reach, G. R. Effect of cysteine on heat inactivation of soybean trypsin inhibitors. J. Agric. Food Chem. 1981, 29, 1196–1199. Lee, J.; Renita, M.; Fioritto, R. J.; St Martin, S. K.; Schwartz, S. J.; Bodovotz, Y. Isoflavone characterization and antioxidant activity of Ohio soybeans. J. Agric. Food Chem. 2004, 52, 2647–2651. Lee, S. J.; Ahn, J. K.; Kim, S. H.; Kim, J. T.; Han, S. J.; Jung, M. Y.; Chung, I. M. Variation in isoflavone of soybean cultivars with location and storage duration. J. Agric. Food Chem. 2003a, 51, 3382-3389. Lee, S. J.; Yan, W.; Ahn, J. K.; Chung, I. M. Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crop. Res. 2003b, 81, 181-192. Li, B.; Qiao, M.; Lu, F. Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Int. 2012, 28, 231-252. Liener, I. E. Implications of antinutritional components in soybean foods. Critical Rev. Food. Sci. Nutr. 1994, 34, 31-67. Lin, Y. S.; Cheng, W. C.; Chen, S. H.; Yeh, A. I. Preparation of nano/submicron Ganoderma tsugae and its stability. J. Food Drug Anal. 2012, 20, 900–907. Liu, B. K.; Chen, H. Y.; Yen, G. W. Studies in antioxidative activity of various traditional edible plants. J. Chin. Agr. Chem. Soc. 1999, 37, 105-116. Liu, H. H.; Chien, J. T.; Kuo, M. I. Ultra high pressure homogenized soy flour for tofu making. Food Hydrocoll. 2013, 32, 278-285. Liu, H. H.; Kuo, M. I. Effect of microwave heating on the viscoelastic property and microstructure of soy protein isolate gel. J. Texture stud. 2011, 42, 1-9. Liu, K. Soybeans: Chemistry, Technology, and Utilization. Chapman & Hall: New York, 1997. Liu, Z. S.; Chang, S. K. C.; Li, L. T.; Tatsum, E. Effect of selective thermal denaturation of soybean proteins on soymilk viscosity and tofu’s physical properties. Food Res. Int. 2004, 37, 815–822. López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal. Chim. Acta. 2013, 763, 1-10. Lo, W. Y. L.; Steinkraus, K. H.; Hand, D. B. Heat sterilization of bottled soymilk. Food Tech. 1968, 22, 787-789. Lusas, E. W.; Riaz, M. N. Soy protein products: processing and use, J. Nutr. 1995, 125, 573S-580S. Machlin, L. J.; Bendich, A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987, 1, 441-445. Maltais, A.; Remondetto, G. E.; Subirade, M. Mechanisms involved in the formation and structure of soya protein cold-set gels: A molecular and supramolecular investigation. Food Hydrocolloids. 2008, 22, 550–559. Marathe, S. A.; Rajalakshmi, V.; Jamdar, S. N.; Sharma, A. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem. Toxico. 2011, 49, 2005-2012. Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M. J.; Zapata-Revilla, M. A.; Tenorio-Sanz, M. D. Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT-Food Sci. Technol. 2010, 43, 1467-1470. Matsuyama, I.; Hirata, H.; Yamagishi, T.; Hayashi, K.; Hirano, Y.; Kuwata, K.; Kiyosawa, I., Nagasawa, T. Fermentation profiles and utilization of sugars of bifidobacteria in soymilk. J. Jpn. Soc. Food Sci. Technol. 1992, 39, 887-893. Min, M. F. L. International Symposium on New Technology of Vegetable Proteins, Oils and Starch Processing. J Cereal Sci. 1987, 5, 307-308. Murota, K.; Shimizu S.; Miyamoto, S.; Izumi, T.; Obata, A.; Kikuchi, M.; Terao, J. Unique uptake and transport of isoflavone aglycones by human intestinal Caco-2 cells. Comparison of isoflavonoids and flavonoids. J Nutr. 2002, 132, 1956–1961. Murphy, P. A.; Barua, K.; Hauck, C. C. Solvent extraction selection in the determination of isoflavones in soy foods. J. Chromatogr. B. 2002, 777, 129–138. Muzquiz, M.; Ridout, C. L.; Price, K. R.; Fenwick, G. R. The saponin content and composition of sweet and bitter lupin seed. J. Agric. Food Chem. 1993, 63, 47-52. Nagano, T.; Fukuda, Y.; Akasaka, T. Dynamic viscoelastic study on the gelation properties of β-conglycinin-rich and glycinin-rich soybean protein isolates. J. Agric. Food Chem. 1996, 44, 3484-3488. Nielsen, N. C. The structure and complexity of the 11S polypeptides in soybeans. J. Am. Oil Chem. Soc. 1985, 62, 1680-1686. Onyeneho, S. N.; Hettiarachchy, N. S. Antioxidant activity, fatty acids and phenolic acids compositions of potato peels. J. Sci. Food Agric. 1993, 62, 345-350. Ou, B.; Hampsch-Woodill, M.; Prior, R. L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619-4926 Oyaizu, M.Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315 Peterson, G.; Barnes, S. Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene. Biochem. Biophys. Res. Commun. 1991, 179, 661-667. Préstamo, G.; Rupérez, P.; Espinosa-Martos, I.; Villanueva, M.J.; Lasunción, M.A. The effects of okara on rat growth, cecal fermentation, and serum lipid. Eur. Food Res. Technol. 2007, 225, 925–928. Prior, R. L.; Hoang, H.; Gu, L.; Wu, X.; Bacchiocca, M.; Howard, L.; Hampsch-Woodill, M.; Huang, D.; Ou, B.; Jacob, R. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 2003, 51, 3273-3279. Prior, R. L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290-4302. Rao, M.; Muralikrishna G. Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet. J. Agric. Food Chem. 2002, 50, 889–892. Redondo-Cuenca, A.; Villanueva-Suárez, M. J.; Rodríguez-Sevilla, M. D.; Mateos-Aparicio, I. Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chem. 2007, 101, 1216-1222. Rehms, H.; Barz, W. Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Applied Microbiology and biotechnology. 1995, 44, 47-52. Rekha, C. R.; Vijayalakshmi, G. Influence of processing parameters on the quality of soycurd (tofu). J. Food Sci. Technol. 2013, 50, 176-180. Renkema, J. M. S.; Knabben, J. H. M.; Van Vliet, T. Gel formation by β-conglycinin and glycinin and their mixtures. Food Hydrocoll. 2001, 15, 407-414. Renkema, J. M.; van Vliet, T. Heat-induced gel formation by soy proteins at neutral pH. J. Agric. Food Chem. 2002, 50, 1569-1573. Rhee, K. C. Functionality of soy proteins. Texas A&M University College Station: Texas, 1994. Riaz, M. N. Processing of soybeans into ingredients. New York, 2006. Riedl, K. M.; Lee, J. H.; Renita, M.; St Martin, S. K.; Schwartz, S. J.; Vodovotz, Y. Isoflavone profiles, phenol content, and antioxidant activity of soybean seeds as influenced by cultivar and growing location in Ohio. J. Sci. Food Agric. 2007, 87, 1197-1206. Roberfroid, M. Prebiotics: the concept revisited. J. Nutr. 2007, 137, 830-837. Roesch, R. R.; Corredig, M. Texture and microstructure of emulsions prepared with soy protein concentrate by high-pressure homogenization. LWT. Food SCI. Technol. 2003, 36, 113-124. Saio, K.; Kamiya, M.; Watanabe, T. Food processing characteristics of soybean 11s and 75 proteins. Part I. effect of difference of protein component among soybean varieties on formation of tofu-gel. Agric. Biol. Chem. 1969, 33,1301- 1308. Sakthivelu, G.; Akitha Devi, M. K.; Giridhar, P.; Rajasekaran, T.; Ravishankar, G. A.; Nikolova, M. T.; Angelov, G. B.; Todorova, R. M.; Kosturkova, G. P. Isoflavone composition, phenol content, and antioxidant activity of soybean seeds from India and Bulgaria. J. Agric. Food Chem. 2008, 56(6), 2090-2095. Schneeman, B. O. Fiber, inulin and oligofructose: similarities and differences. J. Nutr. 1999, 129, 1424S-1427S. Setchell, K.; Brown, N.; Zimmer-neehemias, L.; Brashear, W.; Wolfe, B.; Karischner, A.; Heubi, J. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bio availability. Am. J. Clin Nutr. 2002, 76, 447–453. Shen, C. F .; DeMan, L.; Buzzell, R. I.; DeMan, J. M. Yield and quality of tofu as affected by soybean and soymilk characteristics: Glucono-δ-lactonecoagulant. J. Food Sci. 1991, 56, 109–112. Shinohara, K.; Golman, B.; Uchiyama, T.; Otani, M. Fine-grinding characteristics of hard materials by attrition mill. Powder Technol. 1999, 103, 292–296. Sies, H.; Stahl, W.; Sundquist, A. R. Antioxidant functions of vitamins: vitamins E and C, beta-carotene, and other carotenoids. Ann. N. Y. Acad. Sci. 1992, 669, 7–20. Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299,152-158. Slater, T. F. Free radical mechanisms in tissue injury. London: Pion; 1972. Smith, C.; Van Megen, W.; Twaalfhoven, L.; Hitchcock, C.; The determination of trypsin inhibitor levels in foodstuffs. J. Sci. Food Agric. 1980, 31, 341-350. Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med. 2003, 24, 345–351. Taira, H. Quality of soybean for processed foods in Japan. Jap. Agr. Res. Q. 1990, 24, 224–230. Tanaka, Y.; Inkyo, M.; Yumoto, R.; Nagai, J.; Takano, M.; Nagata, S. Nanoparticulation of poorly water soluble drugs using a wet-mill process and physicochemical properties of the nanopowders. Chem. Pharm. Bull. 2009, 57, 1050–1057. Tan, Q. L. P.; Thanh, H. H. T.; Ha, N. D. T.; Thu, T. D. T. Determination of factors effecting on the hardness of soft peanut tofu using screening model. Emir. J. Food Agric. 2012, 25, 97-101. Takahata, Y.; Ohnishi-Kameyama, M.; Furuta, S.; Takahashi, M.; Suda, I. Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J. Agric. Food Chem. 2001, 49, 5843–5847. Trugo, L. C.; Farah, A.; Cabral, L. Oligosaccharide distribution in Brazilian soya bean cultivars. Food Chem. 1995, 52, 385-387. Tsai, S. J.; Lan, C. Y.; Kao, C. S.; Chen, S. C. Studies on the yield and quality characteristics of tofu. J. Food Sci. 1981, 46, 1734-1737. Tsukamoto, C.; Shimada, S.; Igita, K.; Kudou, S.; Kokubun, M.; Okubo, K.; Kitamura, K. Factors affecting isoflavone content in soybean seeds – changes in isoflavones, saponins, and composition of fatty-acids at different temperatures during seed development. J. Agric. Food Chem. 1995, 43, 1184–1192. Yokomizo, A.; Takenaka, Y.; Takenaka, T. Antioxidative activity of peptides prepared from okara protein. Food Sci. Technol. Res. 2002, 8, 357-359. Yoshiki, Y.; Kudou, S.; Okubo, K. Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Biosci. Biotechnol. Biochem. 1998, 62, 2291-2299. Van der Riet, W. B.; Wight, A. W.; Cilliers, J. J. L.; Datel, J. M. Food chemical investigation of tofu and its byproduct okara. Food Chem. 1989, 34, 193-202. Varinot, C.; Berthiaux, H.; Dodds, J. Prediction of the product size distribution in associations of stirred bead mills. Powder Technol. 1999, 105, 228-236. Villanueva, M. J.; Yokoyama, W. H.; Hong, Y. J.; Barttley, G. E.; Rupérez, P. Effect of high-fat diets supplemented with okara soybean by-product on lipid profiles of plasma, liver and faeces in Syrian hamsters. Food Chem. 2011, 124, 72-79. Vyn, T. J.; Yin, X. H.; Bruulsema, T. W.; Jackson, C. J. C.; Rajcan, I.; Brouder, S. M.; Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max (L.) Merr.]. J. Agric. Food Chem. 2002, 50, 3501-3506. Wallace, G. M.; Bannatyne, W. R.; Khaleque, A. Studies on the processing and properties of soymilk. II. Effect of processing conditions on the trypsin inhibitor activity and the digestibility in vitro of proteins in various soymilk preparations. J Sci Food Agric. 1971, 22, 526–531. Wang, H. J.; Murphy, P. A. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J. Agric. Food Chem. 1994, 42, 1674-1677. Wang, H. J.; Murphy, P. A. Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem. 1996, 44, 2377-2383. Wang, H. L.; Hesseltine, C. W. Coagulation conditions in tofu processing. Process Biochem. 1982, 17, 7–12. Wang, Y., Chen, P.; Zhang, B. Quantitative trait loci analysis of soluble sugar contents in soybean. Plant Breeding. 2014, 4, 493-498. Westfall, R. J.; Hauge, S. M. The nutritive quality and trypsin inhibitor content of soybean flour heated at various temperatures. J. Nutr. 1948, 35, 379-389. Wichens, A. P. Aging and free radical theory. Respir. Physiol. 2001, 128, 379-391. Wolf, W. J. Soybean proteins. Their functional, chemical, and physical properties. J. Agric. Food Chem. 1970, 18, 969-976. Xu, B. J.; Chang, S. K. C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food. Sci. 2007, 72, 159-166. Xu, B. J.; Chang, S. K. Characterization of phenolic substances and antioxidant properties of food soybeans grown in the North Dakota− Minnesota region. J. Agric. Food Chem. 2008, 56, 9102-9113. Xu, B.; Chang, S. K. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. J. Agric. Food Chem. 2009, 57, 10718-10731. Xu, B. J.; Yuan, S. H.; Chang, S. K. C. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 2007, 72, 167-177. Utsumi, S.; Damodaran, S.; Kinsella, J. E. Heat-induced interactions between soybean protein: preferential association of 11S basic subunits and β-subunit of 7S. J. Agric. Food Chem. 1984, 32. 1406–1412. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54224 | - |
| dc.description.abstract | 大豆是全世界最廣泛的豆類作物,隨著品種及栽種條件如雨量、日照、產地等不同,其抗氧化活性及機能性成分含量也會有所不同。豆渣為豆漿過濾後的不溶性副產物,因會影響產品口感及風味、縮短貨架期,應用性低,故豆渣的處理是為加工產業的一大課題。本研究將針對不同品種大豆之機能性成分及抗氧化活性進行分析,找出抗氧化活性最佳的大豆品種,再利用介質研磨處理生豆泥,製作全豆豆花,提高原料大豆之利用率,期望能增加產品的抗氧化活性,提高商業價值。實驗結果顯示,高雄選10號大豆的總異黃酮含量顯著高於其他三者(高雄選10號(K):18.82, 美國基改(GM):9.71, 加拿大非基改(N-GM):6.76, 有機花蓮選1號(H):4.28 mg/g dry solid)。另外,K的蔗糖含量同樣顯著高於其他三者(K:4753, H:1443, GM:4040, N-GM:3707 μg/g dry solid),將有助於其加工製品在風味方面的表現。在抗氧化能力的表現上,K與GM相較之下沒有顯著性的差異,但表現上皆較N-GM和H為佳,故本實驗選用K進行全豆豆花的製作。豆花加工過程雖會造成異黃酮的流失,但利用介質研磨製作全豆豆花不只保留了高比例異黃酮含量(介質研磨組(M): 70.33%, 過濾組(F): 45.93%),更增加了去醣基異黃酮所佔的比例;此外,介質研磨豆花在抗氧化活性,也顯著高於過濾組豆花(ORAC養自由基吸收能力、DPPH自由基清除能力、TEAC總抗氧化能力)。所以,利用介質研磨處理製作全豆豆花,可減少豆渣廢棄物的產生,也能提高產品之抗氧化活性。 | zh_TW |
| dc.description.abstract | Soybean (Glycine max.) is one of the most widely used legumes in the world. Its antioxidation activities and functional compositions are affected by cultivars and growing conditions like rainfall, crop location and light. Okara is the non-soluble by-product of soymilk. It exhibits negative impacts on flavor, texture and shelf life and is generally considered as waste. The objectives of this study were to analyse the content of antioxidants and related antioxidation activitied of soybeans from different varieties for enhancing thr utilization of soybean. The data showed that Kaohsiung No.10 (K) exhibited the most isoflavone among all samples (Kaohsiung No.10 (K): 6.27, Genetically modified from USA (GM): 1.43, S03W4 from Canada (N-GM): 3.24, Hualien organic No.1(H): 2.25 mg/g dry solid) and sucrose is also aboundant (K:4753, H:1443, GM:4040, N-GM:3707 μg/g dry solid) which is good for product flavor. There is no significant difference in antioxidation activities between K and GM. K was chosen to make whole-bean soy pudding. Generally, processing results in the loss of isoflavone. Nontheless, media-milling did not only retain isoflavone but also increase the content of aglycone. Compared with the filtration product, media-milled soybean pudding exhibited greater antioxidation activities (oxygen radical absorbance capacity, trolox equivalent antioxidant capacity, DPPH radical-scavenging activity).From the results, media-milling appeared to minimize the waste and enhance the antioxidation activities of products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:45:30Z (GMT). No. of bitstreams: 1 ntu-104-R02641020-1.pdf: 4091335 bytes, checksum: ee0d54c2267a6969bc759a6e1cc77b02 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖次 V 表次 VI 壹、前言 1 貳、文獻整理 2 1. 大豆(Soybean) 2 1.1 大豆異黃酮 5 1.2 大豆胰蛋白酶抑制因子 8 1.3 豆腐(Tofu)與豆花(Soybean pudding) 9 2. 介質研磨(Media milling) 16 3. 氧化壓力與抗氧化物質 19 4. 體外化學性抗氧化測定 23 4.1 氧自由基吸收能力(oxygen radical absorbance capacity, ORAC) 24 4.2 還原力(reducing power) 25 4.3 總抗氧化能力測定(trolox equivalent antioxidant capacity, TEAC) 25 参、實驗架構 27 肆、材料與方法 29 1. 實驗材料 29 2. 實驗藥品與溶劑 30 3. 儀器設備 31 4. 實驗方法 32 伍、 結果與討論 46 第一部份: 不同品種大豆之抗氧化活性及活性成分分析 46 1. 大豆外觀 46 47 2. 基本成分分析 48 3. 膳食纖維含量 49 4. 糖類組成 51 5. 皂素含量 53 6. 胰蛋白酶抑制活性 54 7. 總多酚含量 55 8. 總類黃酮含量 56 9. 異黃酮含量 57 10. DPPH自由基清除能力 59 11. 氧自由基吸收能力(Oxygen radical absorbance capacity, ORAC) 60 12. 總抗氧化能力(Trolox equivalent antioxidant capacity, TEAC) 61 13. 還原力(Reducing power) 61 第二部份:豆花之抗氧化及活性成分分析 63 1. 豆花外觀 64 2. 生豆漿之固形物及濃度回收率 65 3. 豆漿之粒子型態 66 4. 豆漿之粒徑分佈 67 5. 豆花之基本成份分析 69 6. 豆花保水力測定 70 7. 豆花之微細結構 70 8. 豆花之總多酚含量 72 9. 豆花之異黃酮含量 72 10. 豆花之抗氧化活性 75 11. 豆花之感官品評分析 76 陸、結論 78 柒、參考文獻 79 捌、附錄 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 豆花 | zh_TW |
| dc.subject | 大豆 | zh_TW |
| dc.subject | 異黃酮 | zh_TW |
| dc.subject | 介質研磨 | zh_TW |
| dc.subject | 抗氧化活性 | zh_TW |
| dc.subject | 大豆 | zh_TW |
| dc.subject | 異黃酮 | zh_TW |
| dc.subject | 豆花 | zh_TW |
| dc.subject | 介質研磨 | zh_TW |
| dc.subject | 抗氧化活性 | zh_TW |
| dc.subject | soybean pudding | en |
| dc.subject | soybean pudding | en |
| dc.subject | media-milling | en |
| dc.subject | antioxidant activity | en |
| dc.subject | isoflavone | en |
| dc.subject | soyben | en |
| dc.subject | antioxidant activity | en |
| dc.subject | media-milling | en |
| dc.subject | soyben | en |
| dc.subject | isoflavone | en |
| dc.title | 不同大豆品種及全豆豆花之抗氧化活性 | zh_TW |
| dc.title | The antioxidation activity of soybean from different varieties and whole-bean pudding | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張永和,張克亮,郭孟怡,陳時欣 | |
| dc.subject.keyword | 大豆,異黃酮,豆花,介質研磨,抗氧化活性, | zh_TW |
| dc.subject.keyword | soyben,isoflavone,soybean pudding,media-milling,antioxidant activity, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
