請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李水盛 | |
| dc.contributor.author | Tai-Lin Yao | en |
| dc.contributor.author | 姚代琳 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:37:46Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-24 | |
| dc.identifier.citation | 1. Simić, A., Soković, M. D., Ristić, M., Grujić-Jovanović, S., Vukojević, J. Marin, P. D. The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother. Res. 18, 713–717 (2004). 2. Lee, S.-S., Lin, H.-C. Chen, C.-K. Acylated flavonol monorhamnosides, α-glucosidase inhibitors, from Machilus philippinensis. Phytochemistry 69, 2347–2353 (2008). 3. Lin, H.-C. Lee, S.-S. Proanthocyanidins from the leaves of Machilus philippinensis. J. Nat. Prod. 73, 1375–1380 (2010). 4. Goudel, F., Shibata, M., Coelho, C. M. M. Miller, P. R. M. Fruit biometry and seed germination of Syagrus romanzoffiana (Cham.) Glassm. Acta Bot. Bras. 27, 147–154 (2013). 5. 中國科學院編委會﹙1982﹚。中國植物誌,第31卷,頁198。中國:科學出版社。 6. 台北國際花卉博覽會植栽資料與數位典藏整合查詢系統﹙2010﹚。 7. Liao, J. -C. (1996). Flora of Taiwan (2nd ed.)(pp. 437). Taipei. 8. Isogai, A., Murakoshi, S., Suzuki, A. Tamura, S. Chemistry and biological activities of cinnzeylanine and cinnzeylanol, new insecticidal substances from Cinnamonum zeylanicum Nees. Agric. Biol. Chem. 41, 1779–1784 (1977). 9. Raina, V. K., Srivastava, S. K., Aggarwal, K. K., Ramesh, S. Kumar, S. Essential oil composition of Cinnamomum zeylanicum Blume leaves from Little Andaman, India. Flavour Fragr. J. 16, 374–376 (2001). 10. Angmor, J. E., Dicks, D. M., Evans, W. C. Santra, D. K. Studies on Cinnamomum zeylanicum. Planta Med. 21, 416-420 (1972). 11. Chen, F.-C., Peng, C.-F., Tsai, I.-L. Chen, I.-S. Antitubercular constituents from the stem wood of Cinnamomum kotoense. J. Nat. Prod. 68, 1318–1323 (2005). 12. Chen, C.-Y., Hong, Z.-L., Yang, W.-L., Wu, M.-H., Huang, J.-C. Lee, J.-Y. A novel homosesquiterpenoid from the stems of Cinnamomum burmanii. Nat. Prod. Res. 26, 1218–1223 (2012). 13. Chen, C.-Y., Chen, C.-H., Wong, C.-H., Liu, Y.-W., Liu, Y.-S., Wang, Y.- D. Hsui, Y.-R. Cytotoxic constituents of the stems of Cinnamomum subavenium. J. Nat. Prod. 70, 103–106 (2007). 14. Chen, C.-H., Lo, W.-L., Liu, Y.-C. Chen, C.-Y. Chemical and cytotoxic constituents from the leaves of Cinnamomum kotoense. J. Nat. Prod. 69, 927–933 (2006). 15. Lin, I.-J., Lo, W.-L., Chia, Y.-C., Huang, L.-Y., Cham, T.-M., Tseng, W.-S., Yeh, Y.-T., Yeh, H.-C., Wang, Y.-D. Chen, C.-Y. Isolation of new esters from the stems of Cinnamomum reticulatum Hay. Nat. Prod. Res. 24, 775–780 (2010). 16. Lin, R.-J., Cheng, M.-J., Huang, J.-C., Lo, W.-L., Yeh, Y.-T., Yen, C.-M., Lu, C.-M., Chen, C.-Y. Cytotoxic compounds from the stems of Cinnamomum tenuifolium. J. Nat. Prod. 72, 1816–1824 (2009). 17. Chen, C. Y., Wang, H. M., Chung, S. H., Lo, W. L., Yang, W. L. Yang, S. C. Chemical constituents from the roots of Cinnamomum subavenium. Chem. Nat. Compd. 46, 474–477 (2010). 18. Chen, C.-Y., Liu, T.-Z., Chen, C.-H., Wu, C.-C., Cheng, J.-T., Yiin, S.-J., Shih, M.-K., Wu, M.-J. Chern, C.-L. Isoobtusilactone A-induced apoptosis in human hepatoma Hep G2 cells is mediated via increased NADPH oxidase-derived reactive oxygen species (ROS) production and the mitochondria-associated apoptotic mechanisms. Food Chem. Toxicol. 45, 1268–1276 (2007). 19. Fujita, Y., Yamashita, T. Biochemistry of the essential oils of Cinnamomum micranthum Hay. 2 Nippon Kagaku kaishi 65, 591 (1944). 20. Tsuji-Naito, K. Aldehydic components of Cinnamon bark extract suppresses RANKL-induced osteoclastogenesis through NFATc1 downregulation. Bioorg. Med. Chem. 16, 9176–9183 (2008). 21. Hsieh, T.-J., Su, C.-C., Chen, C.-Y., Liou, C.-H. Lu, L.-H. Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarin, p-hydroxybenzoic acid, and cinnamic acid. J. Mol. Struct. 741, 193–199 (2005). 22. Chao, L. K., Hua, K.-F., Hsu, H.-Y., Cheng, S.-S., Lin, I.-F., Chen, C.-J., Chen, S.-T. Chang, S.-T. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem. Toxicol. 46, 220–231 (2008). 23. Jayaprakasha, G. K., Ohnishi-Kameyama, M., Ono, H., Yoshida, M. Jaganmohan Rao, L. Phenolic constituents in the fruits of Cinnamomum zeylanicum and their antioxidant activity. J. Agric. Food Chem. 54, 1672–1679 (2006). 24. Chen, C.-Y. Yeh, H.-C. A new amide from the stems of Cinnamomum reticulatum Hay. Nat. Prod. Res. 25, 26–30 (2011). 25. Chen, T.-H., Haung, Y.-H., Lin, J.-J., Liau, B.-C., Wang, S.-Y., Wu, Y.-C. Jong, T.-T. Cytotoxic lignan esters from Cinnamomum osmophloeum. Planta Med. 76, 613–619 (2010). 26. Fang, S.-H., Rao, Y. K. Tzeng, Y.-M. Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-γ- activated murine macrophages. Bioorg. Med. Chem. 13, 2381–2388 (2005). 27. Kuo, Y.-C., Lu, C.-K., Huang, L.-W., Kuo, Y.-H., Chang, C., Hsu, F.-L. Lee, T.-H. Inhibitory effects of acylated kaempferol glycosides from the leaves of Cinnamomum kotoense on the proliferation of human peripheral blood mononuclear cells. Planta Med. 71, 412–415 (2005). 28. Nonaka, G., Morimoto, S. Nishioka, I. Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric, and pentameric proanthocyanidins from cinnamon. J. Chem. Soc. [Perkin 1] 2139–2145 (1983). 29. Li, H. T., Chen, C. H., Hong, Z. L., Huang, J. C. Chen, C. Y. Chemical constituents from the leaves of Cinnamomum burmannii. Chem. Nat. Compd. 48, 873–874 (2012). 30. Hsieh, T. J., Hsieh, S. F. Chen, C. Y. Chemical constituents from the stems of Cinnamomum insulari-montanum. Chem. Nat. Compd. 46, 99–100 (2010). 31. Chen, C.-Y., Yang, W.-L. Hsui, Y.-R. A novel sesquiterpenoid from the roots of Cinnamomum subavenium. Nat. Prod. Res. 24, 423–427 (2010). 32. Lin, H.-C. Lee, S.-S. Dibenzocycloheptanoids from the leaves of Cinnamomum subavenium. J. Nat. Prod. 75, 1735–1743 (2012). 33. Ngoc, T. M., Khoi, N. M., Ha, D. T., Nhiem, N. X., Tai, B. H., Don, D. V., Luong, H. V., Son, D. C. Bae, K. H. Xanthine oxidase inhibitory activity of constituents of Cinnamomum cassia twigs. Bioorg. Med. Chem. Lett. 22, 4625–4628 (2012). 34. Chen, H.-L., Kuo, S.-Y., Li, Y.-P., Kang, Y.-F., Yeh, Y.-T., Huang, J.-C. Chen, C.-Y. A new benzodioxocinone from the leaves of Cinnamomum tenuifolium. Nat. Prod. Res. 26, 1881–1886 (2012). 35. Zeng, J., Xue, Y., Shu, P., Qian, H., Sa, R., Xiang, M., Li, X.-N., Luo, Z., Yao, G. Zhang, Y. Diterpenoids with immunosuppressive activities from Cinnamomum cassia. J. Nat. Prod. 77, 1948–1954 (2014). 36. Gershell, L. From the analyst’s couch: Type 2 diabetes market. Nat. Rev. Drug Discov. 4, 367–368 (2005). 37. 行政院衛生署網站http://www.hpa.gov.tw/BHPNet/Web/Index/Index.aspx 38. Cheng, A. Y. Y. Fantus, I. G. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ Can. Med. Assoc. J. 172, 213–226 (2005). 39. Nyenwe, E. A., Jerkins, T. W., Umpierrez, G. E. Kitabchi, A. E. Management of type 2 diabetes : Evolving strategies for the treatment of patients with type 2 diabetes. Metabolism 60, 1–23 (2011). 40. Martin, A. E. Montgomery, P. A. Acarbose : An alpha-glucosidase inhibitor. Am. J. Health. Syst. Pharm. 53, 2277–2290 (1996). 41. Bischoff, H. Pharmacology of alpha-glucosidase inhibition. Eur. J. Clin. Invest. 24 Suppl 3, 3–10 (1994). 42. Watanabe, N. Noriyuki, E. Direct-coupling of FT-NMR to high-performance-liquid-chromatography. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci. 54, 194–199 (1978). 43. Albert, K. Liquid chromatography–nuclear magnetic resonance spectroscopy. J. Chromatogr. A 856, 199–211 (1999). 44. Jaroszewski, J. W. Hyphenated NMR methods in natural products research, part 2: HPLC-SPE-NMR and other new trends in NMR hyphenation. Planta Med. 71, 795–802 (2005). 45. Seger, C., Godejohann, M., Tseng, L.-H., Spraul, M., Girtler, A., Sturm, S. Stuppner, H. LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: Identification of isobaric iridoid glycoside regioisomers from Harpagophytum procumbens. Anal. Chem. 77, 878–885 (2005). 46. Wang, C.-Y. Lee, S.-S. Analysis and identification of lignans in Phyllanthus urinaria by HPLC-SPE-NMR. Phytochem. Anal. PCA 16, 120–126 (2005). 47. Seitimova, G., Eskalieva, B., Burasheva, G. Choudhary, M. Biologically active compounds from Climacoptera obtusifolia. Chem. Nat. Compd. 50, 537–538 (2014). 48. Lin, H.-C., Tsai, S.-F. Lee, S.-S. Flavonoid glycosides from the leaves of Machilus philippinensis. J. Chin. Chem. Soc. 58, 555–562 (2011). 49. Sudarma, I. M., Wazni, N., Wildawaty, N., Yuanita, E. Suana, I. W. An efficient method on nitration of eugenol using NH4NO3 and KHSO4. Asian J. Chem. 26, 173–175 (2013). 50. Kumar, V., Yadav, N. Kartha, K. P. R. In(III) triflate-catalyzed detritylation and glycosylation by solvent-free ball milling. Carbohydr. Res. 397, 18–26 (2014). 51. Yu, J., Kim, J.-H., Lee, H. W., Alexander, V., Ahn, H.-C., Choi, W. J., Choi, J. Jeong, L. S. New RNA purine building blocks, 4′-selenopurine nucleosides: First synthesis and unusual mixture of sugar puckerings. Chem. – Eur. J. 19, 5528–5532 (2013). 52. Ren, G., Hou, J., Sun, H., Liu, X., Zhang, L. Wang, P. G. Synthesis of flavonol 3-O-glycoside by UGT78D1. Glycoconj. J. 29, 425–432 (2012). 53. Kundu, M. K., Trifonova, A., Dinya, Z., F ouml;ldesi, A. Chattopadhyaya, J. Synthetic studies to improve the deuterium labelling in nucleosides for facilitating structural studies of large rnas by high-field NMR spectroscopy. Nucleosides Nucleotides Nucleic Acids 20, 1333–1337 (2001). 54. Nakabayashi, R., Kusano, M., Kobayashi, M., Tohge, T., Yonekura-Sakakibara, K., Kogure, N., Yamazaki, M., Kitajima, M., Saito, K. Takayama, H. Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry 70, 1017–1029 (2009). 55. Stanely, P., Prince, M. Menon, V. P. Hypoglycaemic and other related actions of Tinospora cordifolia roots in alloxan-induced diabetic rats. J. Ethnopharmacol. 70, 9–15 (2000). 56. Noor, H. Ashcroft, S. J. H. Insulinotropic activity of Tinospora crispa extract: effect on szlig;-cell Ca2+ handling. Phytother. Res. 12, 98–102 (1998). 57. Li, R. W., David Lin, G., Myers, S. P. Leach, D. N. Anti-inflammatory activity of Chinese medicinal vine plants. J. Ethnopharmacol. 85, 61–67 (2003). 58. Lam, S.-H., Ruan, C.-T., Hsieh, P.-H., Su, M.-J. Lee, S.-S. Hypoglycemic diterpenoids from Tinospora crispa. J. Nat. Prod. 75, 153–159 (2012). 59. Choudhary, M. I., Ismail, M., Shaari, K., Abbaskhan, A., Sattar, S. A., Lajis, N. H., Atta-ur-Rahman cis-Clerodane-type furanoditerpenoids from Tinospora crispa. J. Nat. Prod. 73, 541–547 (2010). 60. Urabe, D., Asaba, T. Inoue, M. Convergent strategies in total syntheses of complex terpenoids. Chem. Rev. (2015). 61. 中國科學院編委會﹙1982﹚。中國植物誌,第30(1)卷,頁20。中國:科學出版社。 62. Yonemitsu, M., Fukuda, N., Kimura, T., Isobe, R. Komori, T. Studies on the constituents of the stems of Tinospora sinensis, II. . Isolation and structure elucidation of two new dinorditerpene glucosides, tinosinesides A and B. Liebigs Ann. 1995, 437–439 (1995). 63. Dong, L.-P., Chen, C.-X., Ni, W., Xie, B.-B., Li, J.-Z. Liu, H.-Y. A new dinorclerone diterpenoid glycoside from Tinospora sinensis. Nat. Prod. Res. 24, 13–17 (2010). 64. Li, W., Wei, K., Fu, H. Koike, K. Structure and absolute configuration of clerodane diterpene glycosides and a rearranged cadinane sesquiterpene glycoside from the stems of Tinospora sinensis. J. Nat. Prod. 70, 1971–1976 (2007). 65. Huang, X.-Z., Cheng, C.-M., Dai, Y., Fu, G.-M., Guo, J.-M., Yin, Y. Liang, H. A novel 18-norclerodane diterpenoid from the roots of Tinospora sagittata var. yunnanensis. Molecules 15, 8360–8365 (2010). 66. Maurya, R., Manhas, L. R., Gupta, P., Mishra, P. K., Singh, G. Yadav, P. P. Amritosides A, B, C and D: clerodane furano diterpene glucosides from Tinospora cordifolia. Phytochemistry 65, 2051–2055 (2004). 67. Fukuda, N., Yonemitsu, M. Kimura, T. Studies on the constituents of the stems of Tinospora tuberculata Beumee, III. New diterpenoids, borapetoside B and borapetol B. Chem. Pharm. Bull. (Tokyo) 34, 2868–2872 (1986). 68. Fukuda, N., Yonemitsu, M. Kimura, T. Studies on the constituents of the stems of Tinospora tuberculata Beumee, I. N-trans- and N-cis-Feruloyl tyramine, and a new phenolic glucoside, tinotuberide. Chem. Pharm. Bull. (Tokyo) 31, 156–161 (1983). 69. Bhatt, R. K. Sabata, B. K. A furanoid diterpene glucoside from Tinospora cordifolia. Phytochemistry 28, 2419–2422 (1989). 70. Fukuda, N., Yonemitsu, M. Kimura, T. Studies on the constituents of the stems of Tinospora tuberculata, IV. Isolation and structure elucidation of the five new furanoid diterpene glycosides borapetoside C–G. Liebigs Ann. Chem. 1993, 491–495 (1993). 71. Martin, T. S., Ohtani, K., Kasai, R. Yamasaki, K. Furanoid diterpene glucosides from Tinospora rumphii. Phytochemistry 42, 153–158 (1996). 72. Van Kiem, P., Van Minh, C., Dat, N. T., Van Kinh, L., Hang, D. T., Nam, N. H., Cuong, N. X., Huong, H. T. Van Lau, T. Aporphine alkaloids, clerodane diterpenes, and other constituents from Tinospora cordifolia. Fitoterapia 81, 485–489 (2010). 73. Huang, C., Li, W., Ma, F., Li, Q., Asada, Y. Koike, K. Tinospinosides D, E, and tinospin E, further clerodane diterpenoids from Tinospora sagittata. Chem. Pharm. Bull. (Tokyo) 60, 1324–1328 (2012). 74. Maurya, R., Wazir, V., Tyagi, A. Kapil, R. S. Clerodane diterpenoids from Tinospora cordifolia. Phytochemistry 38, 659–661 (1995). 75. Wazir, V., Maurya, R. Kapil, R. S. Cordioside, a clerodane furano diterpene glucoside from Tinospora cordifolia. Phytochemistry 38, 447–449 (1995). 76. Gangan, V. D., Pradhan, P., Sipahimalani, A. T. Banerji, A. Cordifolisides A, B, C: Norditerpene furan glycosides from Tinospora cordifolia. Phytochemistry 37, 781–786 (1994). 77. Pan, L., Terrazas, C., Lezama-Davila, C. M., Rege, N., Gallucci, J. C., Satoskar, A. R. Kinghorn, A. D. Cordifolide A, a sulfur-containing clerodane diterpene glycoside from Tinospora cordifolia. Org. Lett. 14, 2118–2121 (2012). 78. Martin, T. S., Ohtani, K., Kasai, R. Yamasaki, K. Clerodane diterpene glucosides from Tinospora rumphii. Phytochemistry 40, 1729–1736 (1995). 79. Zhao, T., Wang, X., Rimando, A. Che, C. Folkloric medicinal plants: Tinospora sagittata var. cravaniana and Mahonia bealei. Planta Med. 57, 505–505 (1991). 80. Shi, L.-M., Li, R.-Q. Liu, W.-H. Two new furanoid diterpenoids from Tinospora sagittata. Helv. Chim. Acta 91, 978–982 (2008). 81. Zhan, Z.-J., Zhang, X.-Y., Hou, X.-R., Li, C.-P. Shan, W.-G. New diterpenoids from Tinospora capillipes. Helv. Chim. Acta 92, 790–794 (2009). 82. Sivasubramanian, A., Narasimha, K. K. G., Rathnasamy, R. Campos, A. M. F. O. A new antifeedant clerodane diterpenoid from Tinospora cordifolia. Nat. Prod. Res. 27, 1431–1436 (2013). 83. Chen, I.-S. The Constituents of Tinospora Dentata Diels. J. Chin. Chem. Soc. 22, 271–274 (1975). 84. Tuntiwachwuttikul, P., Boonrasri, N., B. Bremner, J. Taylor, W. C. Rearranged clerodane diterpenes from Tinospora baenzigeri. Phytochemistry 52, 1335–1340 (1999). 85. Tuntiwachwuttikul, P. Taylor, W. C. New rearranged clerodane diterpenes from Tinospora baenzigeri. Chem. Pharm. Bull. (Tokyo) 49, 854–857 (2001). 86. Jiang, Z.-Y., Li, W.-J., Jiao, L.-X., Guo, J.-M., Tian, K., Yang, C.-T. Huang, X.-Z. New clerodane diterpenes from Tinospora sagittata var. yunnanensis. Planta Med. 80, 419–425 (2014). 87. Fukuda, N., Nakamura, M., Yonemitsu, M., Kimura, T., Isobe, R. Komori, T. Studies on the constituents of the leaves of Tinospora tuberculata, I. – Isolation and structure elucidation of two new furanoid diterpenes, tinotufolins A and B. Liebigs Ann. Chem. 1993, 325–327 (1993). 88. Fukuda, N., Yonemitsu, M., Kimura, T., Isobe, R. Komori, T. Studies on the constituents of the leaves of Tinospora tuberculata, II. Isolation and structure elucidation of four new furanoid diterpenes, tinotufolins C–F. Liebigs Ann. Chem. 1994, 755–757 (1994). 89. Ragasa, C. Y., Cruz, M. C., Gula, R. Rideout, J. A. Clerodane diterpenes from Tinospora rumphii. J. Nat. Prod. 63, 509–511 (2000). 90. Ahmad, F., Ali, M. Alam, P. New phytoconstituents from the stem bark of Tinospora cordifolia Miers. Nat. Prod. Res. 24, 926–934 (2010). 91. Bisset, N. Nwaiwu, J. Quaternary alkaloids of Tinospora Species. Planta Med. 48, 275–279 (1983). 92. Chang, H., El-Fishawy, A., Slatkin, D. Schiff, P. Quaternary alkaloids of Tinospora capillipes. Planta Med. 50, 88–90 (1984). 93. Sarma, D., Khosa, R. Sahai, M. Isolation of jatrorrhizine from Tinospora cordifolia roots. Planta Med. 61, 98–99 (1995). 94. Maurya, R., Gupta, P., Chand, K., Kumar, M., Dixit, P., Singh, N. Dube, A. Constituents of Tinospora sinensis and their antileishmanial activity against Leishmania donovani. Nat. Prod. Res. 23, 1134–1143 (2009). 95. Yusoff, M., Hamid, H. Houghton, P. Anticholinesterase inhibitory activity of quaternary alkaloids from Tinospora crispa. Molecules 19, 1201–1211 (2014). 96. Cavin, A., Hostettmann, K., Dyatmyko, W. Potterat, O. Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med. 64, 393–396 (1998). 97. Bowen, I. Motawe, H. Isolation and identification of kokusaginine from Tinospora malabarica. Planta Med. 51, 529–530 (1985). 98. Maurya, R. Handa, S. S. Tinocordifolin, a sesquiterpene from Tinospora cordifolia. Phytochemistry 49, 1343–1345 (1998). 99. Sipahimalani, A., N ouml;rr, H. Wagner, H. Phenylpropanoid glycosides and tetrahydrofurofuranlignan glycosides from the adaptogenic plant drugs Tinospora cordifola and Drypetes roxburghii. Planta Med. 60, 596–597 (1994). 100. Yonemitsu, M., Fukuda, N. Kimura, T. Studies on the constituents of Tinospora sinensis I. Separation and structure of the new phenolic glycoside tinosinen. Planta Med. 59, 552–553 (1993). 101. Li, W., Koike, K., Liu, L., Lin, L., Fu, X., Chen, Y. Nikaido, T. New lignan glucosides from the stems of Tinospora sinensis. Chem. Pharm. Bull. (Tokyo) 52, 638–640 (2004). 102. Huang, X.-Z., Cheng, C.-M., Dai, Y., Fu, G.-M., Guo, J.-M., Liang, H. Wang, C. A novel lignan glycoside with antioxidant activity from Tinospora sagittata var. yunnanensis. Nat. Prod. Res. 26, 1876–1880 (2012). 103. Wang, P.-H., Jou, S.-J., Chen, W.-C. Lee, S.-S. An improved oxidative cleavage method for large scale preparation of some acid-labile aglycones from glycosides. J. Chin. Chem. Soc. 49, 103–106 (2002). 104. Choudhary, M. I., Ismail, M., Shaari, K., Abbaskhan, A., Sattar, S. A., Lajis, N. H. Atta-ur-Rahman cis-Clerodane-type furanoditerpenoids from Tinospora crispa. J. Nat. Prod. 73, 541–547 (2010). 105. Lam, S.-H. (2008) Chemical constituents from the stems of Tinospora sinensis. (Doctoral Dissertation) Department of Pharmacy, College of Medicine, National Taiwan University. 106. Liu, R. H ouml;gberg, H.-E. Chemoenzymatic preparation of (2S,3S)- and (2R,3R)-2,3-butanediols and their esters from mixtures of d,l- and meso-diols. Tetrahedron Asymmetry 12, 771–778 (2001). 107. Fengel, D. Wegener, G. Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis 181, pp 145–158 (American Chemical Society, 1979). 108. Tsugita, A. Scheffler, J. J. A rapid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. Eur. J. Biochem. FEBS 124, 585–588 (1982). 109. Cui, J.-F., Bystroem, S., Eneroth, P. Bjoerkhem, I. Novel mechanism for oxidative cleavage of glycosidic bonds – evidence for an oxygen dependent reaction. J. Org. Chem. 59, 8251–8255 (1994). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54044 | - |
| dc.description.abstract | 第一部分 小葉樟之葉部成份研究 小葉樟(Cinnamomum validinerve)為樟科(Lauraceae)植物,分佈於香港、廣東、廣西及台灣,過去文獻報導甲型葡萄糖酶抑制劑,可幫助對第二型糖尿病的患者控制血糖。因此利用甲型葡萄糖酶之抑制活性為導向針對小葉樟葉部之乙醇萃取物進行分離。其中19個化合物中有15個為黃酮醇醣苷(2-16),並用少量的成分,應用高效且有效的HPLC-DAD-SPE-NMR和HPLC-MS技術進行分析。此植物的成分大多為黃酮醇醣苷,和菲律賓楠(Machilus philippinensis)相似,可做為樟科植物化學分類的探討。 第二部分 苦藤莖部成分及borapetoside C衍生物製備之研究 苦藤莖部作為民間藥解熱鎮痛之藥用植物,一些研究報導其具有抗發炎和免疫調節活性,最近我們實驗室經由合作發現borapetoside C具有降血糖活性,因此,本研究針對其結構進行化學修飾之探討。藉由Sephadex LH-20管柱及低壓逆相層析管柱分離苦藤莖部之乙醇萃取物,在正丁醇可溶部分中得到6個化合物(20-25),其中化合物Succinic acid (2(S)-hydroxy-1(S)-methyl)propyl ester (23)及6'-O-lactoyl-borapetoside E (25)為新天然物。接著將分離得到大量之borapetoside C (21)溶於正丁醇中,再加入鈉金屬於氧氣下反應,得到五個產物,包含兩個glucosides及三個aglycons。結構解析這些產物,發現在強鹼反應下,C-18酯基被水解,甚至更進一步還原成一級醇,此外,C-3雙鍵系統被還原或是異構化,然而C-6上的糖基沒有完全得被切除,因此尚須更長的時間進行反應。由實驗結果得知,利用此方法可有效針對雙萜類結構之化合物進行結構修飾。 | zh_TW |
| dc.description.abstract | Part 1. Chemical investigation of Cinnamomum validinerve leaf Cinnamomum validinerve is a Lauraceae plant, growing in Hong Kong, Guangdong, Guangxi and Taiwan. α-Glucosidase inhibitors could assist the control of the postprandial blood glucose level for the type-II diabetes patients. Following bioassay-guided fractionation and separation against α-Glucosidase, 19 known compounds in total from the EtOH extract of C. brevipedunculatum leaves were identified. Among them, 15 flavonol glycosides (2-16) were characterized by application of HPLC-DAD-SPE-NMR and HPLC-MS hyphenations, which require only small amount of plant materials and are efficient and powerful in phytochemical analysis. These flavonoid glycosides are similar to those from Machilus philippinensis, indicating potential chemotaxonomic significance for the Lauraceae family. Part 2. Chemical investigation of Tinospora crispa stem and preparation of borapetoside C derivatives The stems of Tinospora crispa has has been used as folklore medicine for antipyretic and analgesia. Some studies have shown its anti-inflammatory and immunomodulatory activities. Our lab via cooperation recently discovered the hypoglycemic activity of borapetoside C. Hence, this study was aimed to isolate this comstituent for further chemical modification. Six compounds (20-25) were isolated from the n-BuOH soluble fraction of the EtOH extract of the stems of T. crispa via Sephadex LH-20 and reversed phase Lobar column. Of these, succinic acid (2(S)-hydroxy-1(S)-methyl)propyl ester (23) and 6'-O-lactoyl-borapetoside E (25) are new natural products. Preparation of borapetoside C derivarives was undertaken by reacting with sodium in n-BuOH under oxygen. Five products including two glucosides and three aglycons were characterized. Structural analysis of these products indicates that several reactions took place. Hydrolysis of C-18 ester is the common phemomenon under such strong alkaline condition and this functional group could be futher reduced to primary alcohol. The C-3 double bond was either reduced or isomerized. The 6-O-glucosyl group, however, was not removed completely. To achieve the last purpose, longer reaction time might be required. This approach is effective to prepare some borapetoside C derivatives. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:37:46Z (GMT). No. of bitstreams: 1 ntu-104-R02423024-1.pdf: 19545593 bytes, checksum: f45409e7f635304545a77327c7109ece (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 總目錄 口試委員審定書……………………………………………………………………….i 誌謝………………………………………………………………………………....…ii 中文摘要………………………………………………………………………………I 英文摘要……………………………………………………………………………...II 目錄…………………………………………………………………………………..IV 流程圖目錄(List of Tables) ……………………………………………...…………VII 表目錄(List of Figures) …………………………………………………………….VII 圖目錄(List of Schemes) …………………………………………………………..VIII 辭彙(Glossary) …………………………………………………………………......XII 目錄 壹、小葉樟之葉部成分研究 1 1. 緒論及研究目的 1 1.1 研究目的 1 1.2 小葉樟植物簡介 2 1.3 樟科樟屬(Cinnamomum)植物成分之文獻回顧 3 1.4 糖尿病與臨床治療藥物 15 1.4.1 糖尿病之盛行率與簡介 15 1.4.2 糖尿病治療藥物 15 1.4.3 甲型葡萄糖酶抑制劑(α-glucosidase inhibitors)之簡介 16 1.5 HPLC-DAD-SPE-NMR Hyphenation 之簡介 17 2. 實驗結果與討論 19 2.1 活性測試 20 2.2 HPLC-SPE-NMR技術之分析 21 2.2.1 化合物2-10之結構解析 23 2.2.2 化合物11-16之結構解析 29 2.2.3 討論 34 2.3 葉部成分之分離及結構鑑定 35 2.3.1 Eugenol (1)分子結構之解析 35 2.3.2 Uridine (17)、Adenosine (18)之分子結構解析 36 2.3.3 Kaempferol (19)之分子結構判斷 37 2.3.4 結論 38 3. 實驗部分 39 3.1 儀器與材料 39 3.1.1 理化性質測定儀器 39 3.1.2 成分分離之儀器及材料 39 3.1.3 試劑與溶媒 40 3.1.4 活性試驗之試劑與儀器 41 3.2 植物來源 42 3.3 萃取與純化 42 3.3.1 正己烷可溶部分之分離 44 3.3.2 乙腈可溶部分之分離 44 3.3.3 正丁醇可溶部分之分離 45 3.3.3.1 Fr. B-7之純化 45 3.3.3.2 Fr. B-9之純化 45 3.3.3.3 Fr. B-10之純化 45 3.3.4 不溶部分之分離 47 3.4 HPLC-DAD-SPE-NMR及LC-MS分析 47 3.4.1 Fr. P-II-5之分析條件 47 3.4.2 Fr. P-II-6之分析條件 48 3.4.3 Fr. P-II-7之分析條件 48 3.4.4 Fr. P-II-8之分析條件 49 3.5 化合物之物理數據 50 3.6 甲型葡萄糖水解酶之活性試驗(α-glucosidase assay) 52 3.6.1 原理 52 3.6.2 實驗方法 52 3.6.2.1 試劑配製 52 3.6.2.2 實驗步驟 53 貳、苦藤莖部成分及borapetoside C衍生物製備之研究 .54 1. 緒論及研究目的 54 1.1 研究目的 54 1.2 苦藤植物之簡介 55 1.3 防己科青牛膽屬植物成分之研究 56 2. 實驗結果與討論 66 2.1 莖部成分之分離及結構解析 67 2.1.1 Borapetoside B (20)、Borapetoside C (21)及Borapetoside F (22)之 解析結構 67 2.1.2 Borapetoside E (24)分子結構之解析 72 2.1.3 6'-Lactoyl-borapetoside E (25)分子結構之解析 74 2.1.4 Succinic acid (2(S)-hydroxy-1(S)-methyl)propyl ester (23)及O-methylsuccinic acid (2(S)-hydroxy-1(S)-methyl)propyl ester (23a) 之分子結構之解析 76 2.2 Borapetoside C結構修飾研究 78 2.2.1 酸水解反應 78 2.2.2 強鹼氧化降解反應 79 2.2.2.1 化合物26及28分子結構之解析 80 2.2.2.2 化合物27及29分子結構之解析 84 2.2.2.3 化合物30分子結構之解析 88 2.3 結論 90 3. 實驗部分 91 3.1 儀器與材料 91 3.1.1 理化性質測定儀器 91 3.1.2 成分分離之儀器及材料 91 3.1.3 試劑與溶媒 92 3.1.4 有機反應之儀器及材料 93 3.2 植物來源 94 3.3 萃取與純化 94 3.3.1 正丁醇可溶部分之分離 96 3.3.1.1 Fr. B-I-3之分離 96 3.3.1.2 Fr. B-I-4之分離 96 3.3.1.3 Fr. B-I-4-12及Fr. B-I-4-13之分離與純化 97 3.3.1 化合物21、24及25分析條件 97 3.4 Borapetoside C衍生物之製備與分離 99 3.4.1 化合物26-30之製備 99 3.4.2 正丁醇及氯仿可溶部分之分離 99 3.4.2.1 化合物26-27之分離 99 3.4.2.2 化合物28-30之分離 100 3.5 化合物之物理數據 102 參考文獻 104 附 圖 113 流程圖目錄 Scheme 1. Fractionation scheme of EtOH extract of the leaves of C. validinerve. 42 Scheme 2. Separation scheme of EtOH extract of the leaves of Cinnamomum validinerve. 43 Scheme 3. Separation scheme of compound 1 from hexanes and ACN souble fraction. 44 Scheme 4. Fractionation and separation scheme of the n-BuOH souble part. 46 Scheme 5. Fractionation and HPLC-SPE-NMR analysis scheme of the insouble part. 46 Scheme 6 . The principle of α-glucosidase assay. 52 Scheme 7. Preparation of compounds 26-30. 79 Scheme 8. Fractionation scheme of n-BuOH extract of the stems of Tinospora crispa. 94 Scheme 9. Separation scheme of n-BuOH extract of the stems of Tinospora crispa. 95 Scheme 10. Fractionation scheme of the products form the oxidative degradation reaction of the borapetoside C major fraction. 101 Scheme 11. Separation scheme of compound 26-30. 101 表目錄 Table 1. Compounds isolated from formodan Cinnamomum plants. 3 Table 2. Oral antidiabetic agents 16 Table 3. HPLC retention time (Rt, min), ESI-MS, and 1H NMR data of compounds 2-10. 26 Table 4. 1H NMR data of compounds 2, 3, 6, 8 (CD3CN﹐Bruker AV-III 600) and reference compounds. 27 Table 5 . 1HNMR data of compounds 4, 5, 7, 10 (CD3CN﹐Bruker AV-III 600) and reference compounds. 28 Table 6. 1H NMR data of compounds 11 and 12 (CD3CN﹐600 MHz) and reference. 32 Table 7. 1H NMR data of compounds 11-16 (CD3CN﹐600 MHz). 33 Table 8. 1H 13C NMR data of compound 1 (CDCl3﹐400 MHz) and reference. 35 Table 9. 1H NMR data of compounds 17, 18 (CD3OD﹐200 MHz) and reference. 36 Table 10. 1H NMR data of compound 19 (CD3OD﹐200 Mz) and reference. 37 Table 11. Compounds isolated from Tinospora plants. 56 Table 12. 1H 13C NMR data of borapetoside B (20) (CD3OD), and reference. 69 Table 13. 1H 13C NMR data of borapetoside C (21) (CD3OD) and reference. 70 Table 14 1H 13C NMR data of borapetoside F (22) (CD3OD) and reference. 71 Table 15. 1H 13C NMR data of borapetoside E (24) (CD3OD) and reference 73 Table 16. 1H, 13C and 2D NMR data of compound 25 (CD3OD﹐400 MHz). 75 Table 17. 1H, 13C and 2D NMR data of compound 23a (CDCl3﹐600 MHz). 77 Table 18. Conditions for acid hydrolysis reaction. 78 Table 19. 1H, 13C and 2D NMR data of compound 26 (CD3OD﹐600 MHz). 82 Table 20. 1H, 13C and 2D NMR data of compound 28 (CD3OD﹐600 MHz). 83 Table 21.1H, 13C and 2D NMR data of compound 27 (CD3OD﹐600 MHz). 86 Table 22.1H, 13C and 2D NMR data of compound 29 (CD3OD﹐600 MHz). 87 Table 23.1H, 13C and 2D NMR data of compound 30 (CD3OD﹐600 MHz). 89 圖目錄 Figure 1. 小葉樟(Cinnamomum validinerve)植物形態 2 Figure 2. Other compounds(C-138-C-146) isolated from Cinnamomum plants. 9 Figure 3. Terpenoids and butenolides isolated from Cinnamomum plants. 10 Figure 4. Butenolides, phenylpropanoids and lignans isolated from Cinnamomum plants. 11 Figure 5. Flavonoids and proanthocyanidins isolated from Cinnamomum plants. 12 Figure 6. Proanthocyanidins, steroids and other compounds(C-90-C-105) isolated from Cinnamomum plants. 13 Figure 7. Other compounds(C-101-C-138) isolated from Cinnamomum plants. 14 Figure 8. Typical layout of HPLC-DAD-MS-NMR system. 17 Figure 9. Schematic representation of the hyphenated HPLC-SPE-NMR. 18 Figure 10 (A). Inhibitory activities of six subfractions of the EtOH extract. (B). Inhibitory activities of eight subfractions of the insoluble part.. 20 Figure 11. HPLC chromatograms of Fr. P-Ⅱ-5~8. 22 Figure 12. 1H-NMR spectra of compounds 2-10 obtained from HPLC-SPE-NMR (Bruker AV-III 600, CD3CN) 25 Figure 13. 1H-NMR spectra of compounds 11-16 obtained from HPLC-SPE-NMR (Bruker AV-III 600, CD3CN). 31 Figure 14. 96孔微量測試盤上各組測試樣品的排列情形 53 Figure 15. Tinospora crispa 之植物形態 55 Figure 16. Diterpenoids (T1-T39) isolated from Tinospora plants. 61 Figure 17. Diterpenoids (T40-T64) isolated from Tinospora plants. 62 Figure 18. Diterpenoids (T65-T77, T116-T119) isolated from Tinospora plants. 63 Figure 19. Alkaloids and lignans isolated from Tinospora plants. 64 Figure 20. Phenylpropenoids and other compounds isolated from Tinospora plants. 65 Figure 21. 3D conformation of compound 28 based on NOESY correlations. 81 Figure 22. 3D conformation of compound 29 based on NOESY correlations. 85 Figure 23. RP-HPLC chromatogram of compounds 21 and 24. 98 Figure 24. RP-HPLC chromatogram of compound 25. 98 Figure 25. 1H-NMR spectrum of eugenol (1) (CDCl3, 400 MHz) 114 Figure 26. 13C-NMR spectrum of eugenol (1) (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CDCl3, 100 MHz) 115 Figure 27. 1H-NMR spectrum of quercetin-3-O-β-D-galactopyranoside (2) (CD3CN, 600 MHz) 116 Figure 28. 1H-NMR spectrum of quercetin-3-O-β-D-glucopyranoside (3) (CD3CN, 600 MHz) 117 Figure 29. 1H-NMR spectrum of kaempferol-3-O-β-D-galactopyranoside (4) (CD3CN, 600 MHz) 118 Figure 30. 1H-NMR spectrum of kaempferol-3-O-β-D-glucopyranoside (5) (CD3CN, 600 MHz) 119 Figure 31. 1H-NMR spectrum of quercetin-3-O-β-D-xylopyranoside (6) (CD3CN, 600 MHz) 120 Figure 32. 1H-NMR spectrum of kaempferol-3-O-β-D-xylopyranoside (7) (CD3CN, 600 MHz) 121 Figure 33. 1H-NMR spectrum of quercetin-3-O-α-L-rhamnopyranoside (8) (CD3CN, 600 MHz) 122 Figure 34. 1H-NMR spectrum of kaempferol-3-O-α-L-arabinofuranoside (9) (CD3CN, 600 MHz) 123 Figure 35. 1H-NMR spectrum of kaempferol-3-O-α-L-rhamnopyranoside (10) (CD3CN, 600 MHz) 124 Figure 36. 1H-NMR spectrum of kaempferol-3-O-(4'-E-p-coumaroyl)- α-L-rhamnopyranoside (11) (CD3CN, 600 MHz) 125 Figure 37. 1H-NMR spectrum of kaempferol-3-O-(4'-Z-p-coumaroyl)- α-L-rhamnopyranoside (12) (CD3CN, 600 MHz) 126 Figure 38. 1H-NMR spectrum of kaempferol-3-O-(2',4'-di-E-p-coumaroyl)- α-L-rhamnopyranoside (13) (CD3CN, 600 MHz) 127 Figure 39. 1H-NMR spectrum of kaempferol-3-O-(2'-E, 4'-Z-di-p-coumaroyl)- α-L-rhamnopyranoside (14) (CD3CN, 600 MHz) 128 Figure 40. 1H-NMR spectrum of kaempferol-3-O-(2',4'-di-Z-p-coumaroyl)- α-L-rhamnopyranoside (15) (CD3CN, 600 MHz) 129 Figure 41. 1H-NMR spectrum of kaempferol-3-O-(2'-Z, 4'-E-di-p-coumaroyl)- α-L-rhamnopyranoside (16) (CD3CN, 600 MHz) 130 Figure 42. 1H-NMR spectrum of uridine (17) (CD3OD, 200 MHz) 131 Figure 43. 1H-NMR spectrum of adenosine (18) (CD3OD, 200 MHz) 132 Figure 44. 1H-NMR spectrum of kaempferol (19) (CD3OD, 200 MHz) 133 Figure 45. 1H-NMR spectrum of borapetoside B (20) (CD3OD, 200 MHz) 134 Figure 46. 13C-NMR spectra of borapetoside B (20) (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 50 MHz) 135 Figure 47. 1H-NMR spectrum of borapetoside C (21) (CD3OD, 200 MHz) 136 Figure 48. 13C-NMR spectra of borapetoside C (21) (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 50 MHz) 137 Figure 49. 1H-NMR spectrum of borapetoside F (22) (CD3OD, 200 MHz) 138 Figure 50. 13C-NMR spectrua of borapetoside F (22) (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 50 MHz) 139 Figure 51. 1H-NMR spectrum of succinic acid (2(S)-hydroxy-1(S)-methyl)propyl ester (23) (CD3OD, 400 MHz) 140 Figure 52. 1H-NMR spectrum of O-Mehtylsuccinic acid (2(S)-hydroxy-1(S)- methyl)propyl ester (23a) (CDCl3, 600 MHz) 141 Figure 53. 13C-NMR spectra of O-Mehtylsuccinic acid (2(S)-hydroxy-1(S)- methyl)propyl ester (23a) (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CDCl3, 50 MHz) 142 Figure 54. COSY spectrum of O-Mehtylsuccinic acid (2(S)-hydroxy-1(S)- methyl)propyl ester (23a) (CDCl3, 600 MHz) 143 Figure 55. HSQC spectrum of O-Mehtylsuccinic acid (2(S)-hydroxy-1(S)- methyl)propyl ester (23a) (CDCl3, 600 MHz) 144 Figure 56. HMBC spectrum of O-Mehtylsuccinic acid (2(S)-hydroxy-1(S)- methyl)propyl ester (23a) (CDCl3, 600 MHz) 145 Figure 57. 1H-NMR spectrum of borapetoside E (24) (CD3OD, 200 MHz) 146 Figure 58. 13C -NMR spectra of borapetoside E (24) (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 50 MHz) 147 Figure 59. 1H-NMR spectrum of 6'-O-lactoyl-borapetoside E (25) (CD3OD, 600 MHz) 148 Figure 60. 13C-NMR spectrum of 6'-O-lactoyl-borapetoside E (25) (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 150 MHz) 149 Figure 61. HSQC spectrum of 6'-O-lactoyl-borapetoside E (25) (CD3OD, 600 MHz) 150 Figure 62. HMBC spectrum of 6'-O-lactoyl-borapetoside E (25) (CD3OD, 600 MHz) 151 Figure 63. 1H-NMR spectrum of compound 26 (CD3OD, 600 MHz) 152 Figure 64. 13C-NMR spectra of compound 26 (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 150 MHz) 153 Figure 65. COSY spectrum of compound 26 (CD3OD, 600 MHz) 154 Figure 66. HSQC spectrum of compound 26 (CD3OD, 600 MHz) 155 Figure 67. HMBC spectrum of compound 26 (CD3OD, 600 MHz) 156 Figure 68. NOESY spectrum of compound 26 (CD3OD, 600 MHz) 157 Figure 69. 1D selective NOESY spectrum of compound 26 (CD3OD, 600 MHz) 158 Figure 70. 1H-NMR spectrum of compound 27 (CD3OD, 600 MHz) 159 Figure 71. 13C-NMR spectra of compound 27 (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 150 MHz) 160 Figure 72. COSY spectrum of compound 27 (CD3OD, 600 MHz) 161 Figure 73. HSQC spectrum of compound 27 (CD3OD, 600 MHz) 162 Figure 74. HMBC spectrum of compound 27 (CD3OD, 600 MHz) 163 Figure 75. NOESY spectrum of compound 27 (CD3OD, 600 MHz) 164 Figure 76. 1H-NMR spectrum of compound 28 (CD3OD, 600 MHz) 165 Figure 77. 13C-NMR spectra of compound 28 (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 150 MHz) 166 Figure 78. COSY spectrum of compound 28 (CD3OD, 600 MHz) 167 Figure 79. HSQC spectrum of compound 28 (CD3OD, 600 MHz) 168 Figure 80. HMBC spectrum of compound 28 (CD3OD, 600 MHz) 169 Figure 81. NOESY spectrum of compound 28 (CD3OD, 600 MHz) 170 Figure 82. 1H-NMR spectrum of compound 29 (CD3OD, 600 MHz) 171 Figure 83. 13C-NMR spectra of compound 29 (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 150 MHz) 172 Figure 84. COSY spectrum of compound 29 (CD3OD, 600 MHz) 173 Figure 85. HSQC spectrum of compound 29 (CD3OD, 600 MHz) 174 Figure 86. HMBC spectrum of compound 29 (CD3OD, 600 MHz) 175 Figure 87. NOESY spectrum of compound 29 (CD3OD, 600 MHz) 176 Figure 88. 1H-NMR spectrum of compound 30 (CD3OD, 600 MHz) 177 Figure 89. 13C-NMR spectra of compound 30 (BBD: bot.; DEPT-90: top; DEPT-135: mid.) (CD3OD, 100 MHz) 178 Figure 90. COSY spectrum of compound 30 (CD3OD, 600 MHz) 179 Figure 91. HSQC spectrum of compound 30 (CD3OD, 600 MHz) 180 Figure 92. HMBC spectrum of compound 30 (CD3OD, 600 MHz) 181 Figure 93. NOESY spectrum of compound 30 (CD3OD, 600 MHz) 182 | |
| dc.language.iso | zh-TW | |
| dc.subject | 化學結構修飾 | zh_TW |
| dc.subject | 小葉樟 | zh_TW |
| dc.subject | 粗脈桂 | zh_TW |
| dc.subject | 樟科 | zh_TW |
| dc.subject | 甲型葡萄糖?抑制劑 | zh_TW |
| dc.subject | 黃酮類 | zh_TW |
| dc.subject | 苦藤 | zh_TW |
| dc.subject | 波葉青牛膽 | zh_TW |
| dc.subject | borapetoside C | zh_TW |
| dc.subject | 化學結構修飾 | zh_TW |
| dc.subject | 小葉樟 | zh_TW |
| dc.subject | 粗脈桂 | zh_TW |
| dc.subject | 樟科 | zh_TW |
| dc.subject | 甲型葡萄糖?抑制劑 | zh_TW |
| dc.subject | 黃酮類 | zh_TW |
| dc.subject | 苦藤 | zh_TW |
| dc.subject | 波葉青牛膽 | zh_TW |
| dc.subject | borapetoside C | zh_TW |
| dc.subject | Cinnamomum validinerve | en |
| dc.subject | Lauraceae | en |
| dc.subject | α-Glucosidase inhibitors | en |
| dc.subject | flavonoid | en |
| dc.subject | Tinospora crispa | en |
| dc.subject | borapetoside C | en |
| dc.subject | chemical modification | en |
| dc.subject | borapetoside C | en |
| dc.subject | chemical modification | en |
| dc.subject | Cinnamomum validinerve | en |
| dc.subject | Lauraceae | en |
| dc.subject | α-Glucosidase inhibitors | en |
| dc.subject | flavonoid | en |
| dc.subject | Tinospora crispa | en |
| dc.title | 第一部分 小葉樟之葉部成分研究 第二部份 苦藤莖部成分及borapetoside C衍生物製備之研究 | zh_TW |
| dc.title | Part Ⅰ. Chemical investigation of the leaves of Cinnamomum validinerve Part Ⅱ. Chemical investigation of Tinospora crispa stems and preparation of borapetoside C derivatives | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳益昇,李安榮,陳繼明,張嘉銓 | |
| dc.subject.keyword | 小葉樟,粗脈桂,樟科,甲型葡萄糖?抑制劑,黃酮類,苦藤,波葉青牛膽,borapetoside C,化學結構修飾, | zh_TW |
| dc.subject.keyword | Cinnamomum validinerve,Lauraceae,α-Glucosidase inhibitors,flavonoid,Tinospora crispa,borapetoside C,chemical modification, | en |
| dc.relation.page | 182 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-24 | |
| dc.contributor.author-college | 藥學專業學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 19.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
