Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5276
Title: 機器學習於合約橋牌叫牌上之應用
Contract Bridge Bidding by Learning
Authors: Chun-Yen Ho
何君彥
Advisor: 林軒田(Hsaun-Tien Lin)
Keyword: 機器學習,合約橋牌,情境式拉霸問題,信心值上界,成本導向分類器,
Machine Learning,Contract Bridge,Contextual Bandit Problem,Upper-Confidence Bound,Cost-Sensitive Classification,
Publication Year : 2014
Degree: 碩士
Abstract: 合約橋牌是一種具有不完全資訊特性的遊戲,電腦在此遊戲中通常無法勝過人類的橋牌專家。其中,人類橋牌玩家的叫牌決定對於電腦程式而言特別難以模仿,這使得自動化叫牌仍然是一個具挑戰性的研究問題。另一方面,使用不模仿人類玩家的方法進行自動化叫牌的可能性目前尚未被充份研究,在這篇論文中,我們在無競叫叫牌問題上首先探討使用此種方法的可能性。我們提出一個獨創的機器學習架構以使電腦程式學習自己的叫牌決定。在這個架構下,我們將叫牌問題轉換為機器學習問題,並精心設計一個基於成本導向分類器和信心值上界演算法的模型以解決此問題。我們以實驗驗證所提出的模型,並發現此模型與模仿人類玩家叫牌決定且多次贏得冠軍的電腦橋牌程式相較具有相當的競爭力。
Contract bridge is an example of an incomplete information game for which computers typically do not perform better than expert human bridge players. In particular, the typical bidding decisions of human bridge players are difficult to mimic with a computer program, and thus automatic bridge bidding remains to be a challenging research problem. Currently, the possibility of automatic bidding without mimicking human players has not been fully studied. In this work, we take an initiative to study such possibility for the specific problem of bidding without competition. We propose a novel learning framework to let a computer program learn its own bidding decisions. The framework transforms the bidding problem into a learning problem, and then solves the problem with a carefully designed model that consists of costsensitive classifiers and upper-confidence-bound algorithms. We validate the proposed model and find that it performs competitively to the champion computer bridge program that mimics human bidding decisions.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5276
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf767.94 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved