Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52390
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋(Ting-Jang Lu)
dc.contributor.authorYou-Ran Chenen
dc.contributor.author陳攸然zh_TW
dc.date.accessioned2021-06-15T16:13:33Z-
dc.date.available2020-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-17
dc.identifier.citation林怡朱。靈芝不同生長階段液態培養菌絲與子實體之可溶性多醣特性。國立台灣大學碩士論文。2005。
張東柱、周文能、吳美麗、王也珍。福山大型真菌。行政院農委員會出版。2000。
張東柱、周文能、王也珍、朱宇敏。台灣大型真菌。行政院農委員會出版。2001。
張毅偉。靈芝中具beta-(16)分支之(13)-beta-D-葡聚糖的特性與檢測。國立台灣大學博士論文。2003。
傅昭憲。台灣三種靈芝菌之培養性狀,病原性與腐朽之硏究。國立台灣大學碩士論文。1991。
黃琬庭。結合酵素-層析法分析可食用菇類中具分支之(1,3; 1,6)-b-D-葡萄聚醣含量。國立台灣大學碩士論文。2013。
Bao, X.; Liu, C.; Fang, J.; Li, X., Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst. Carbohydr. Res. 2001, 332, 67-74.
Bartnicki-Garcia, S., Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annual Reviews in Microbiology 1968, 22, 87-108.
Blumenkrantz, N.; Asboe-Hansen, G., New method for quantitative determination of uronic acids. AnBio 1973, 484-9.
Bohn, J. A.; BeMiller, J. N., (1→ 3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym. 1995, 28, 3-14.
Borchers, A. T.; Stern, J. S.; Hackman, R. M.; Keen, C. L.; Gershwin, M. E., Mushrooms, tumors, and immunity. PSEBM 1999, 221, 281-293.
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. AnBio 1976, 72, 248-254.
Brown, G. D.; Gordon, S., Immune recognition: a new receptor for β-glucans. Nature 2001, 413, 36-37.
Brown, G. D.; Taylor, P. R.; Reid, D. M.; Willment, J. A.; Williams, D. L.; Martinez-Pomares, L.; Wong, S. Y.; Gordon, S., Dectin-1 is a major β-glucan receptor on macrophages. J. exp. med. 2002, 196, 407-412.
Brown, G. D.; Gordon, S., Immune recognition of fungal β‐glucans. Cell. Microbiol. 2005, 7, 471-479.
Cabib, E.; Bowers, B.; Sburlati, A.; Silverman, S., Fungal cell wall synthesis: the construction of a biological structure. Microbiol. Sci. 1988, 5, 370-375.
Chan, G.; Chan, W. K.; Sze, D., The effects of beta-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009, 2, 1-11.
Chen, J.; Seviour, R., Medicinal importance of fungal β-(1→ 3),(1→ 6)-glucans. Mycol. Res. 2007, 111, 635-652.
Cheng, C. R.; Yue, Q. X.; Wu, Z. Y.; Song, X. Y.; Tao, S. J.; Wu, X. H.; Xu, P. P.; Liu, X.; Guan, S. H.; Guo, D. A., Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 2010, 71, 1579-1585.
Danielson, M. E.; Dauth, R.; Elmasry, N. A.; Langeslay, R. R.; Magee, A. S.; Will, P. M., Enzymatic method to measure β-1, 3-β-1, 6-glucan content in extracts and formulated products (GEM assay). J. Agric. Food Chem. 2010, 58, 10305-10308.
De Ruiter, G. A.; Schols, H. A.; Voragen, A. G.; Rombouts, F. M., Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. AnBio 1992, 207, 176-185.
Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P.; Smith, F., Colorimetric method for determination of sugars and related substances. AnaCh 1956, 28, 350-356.
Evans, N.; Hoyne, P., A fluorochrome from aniline blue: structure, synthesis and fluorescence properties. AJCh 1982, 35, 2571-2575.
Evans, N.; Hoyne, P.; Stone, B., Characteristics and specificity of the interaction of a fluorochrome from aniline blue (sirofluor) with polysaccharides. Carbohydr. Polym. 1984, 4, 215-230.
Falch, B.; Stokke, B., Structural stability of (1→ 3)-β-d-glucan macrocycles. Carbohydr. Polym. 2001, 44, 113-121.
Fatmawati, S.; Shimizu, K.; Kondo, R., Ganoderol B: A potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 2011, 18, 1053-1055.
Gao, J. J.; Min, B. S.; Ahn, E. M.; Nakamura, N.; Lee, H. K.; Hattori, M., New triterpene aldehydes, lucialdehydes AC, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem. Pharm. Bull. 2002, 50, 837-840.
Gibbons, M., The determination of methylpentoses. Analyst 1955, 80, 268-276.
Hölker, U.; Lenz, J., Solid-state fermentation—are there any biotechnological advantages? Curr. Opin. Microbiol. 2005, 8, 301-306.
Kanazawa, M.; Mori, Y.; Yoshihara, K.; Iwadate, M.; Suzuki, S.; Endoh, Y.; Ohki, S.; Takita, K.-i.; Sekikawa, K.; Takenoshita, S.-i., Effect of PSK on the maturation of dendritic cells derived from human peripheral blood monocytes. Immunol. Lett. 2004, 91, 229-238.
Kurashige, S.; Akuzawa, Y.; Endo, F., Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and activities of macrophages and lymphocytes in mice treated with a carcinogen, N-butyl-N-butanolnitrosoamine. Immunopharmacol. Immunotoxicol. 1997, 19, 175-183.
Ladányi, A.; Tímár, J.; Lapis, K., Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells. Cancer Immunol., Immunother. 1993, 36, 123-126.
Lee, I.; Kim, H.; Youn, U.; Kim, J.; Min, B.; Jung, H.; Na, M.; Hattori, M.; Bae, K., Effect of Lanostane Triterpenes from the Fruiting Bodies of< EM EMTYPE=. Planta Med. 2010, 76, 1558-1563.
Leung, M.; Liu, C.; Koon, J.; Fung, K., Polysaccharide biological response modifiers. Immunol. Lett. 2006, 105, 101-114.
Münz, C.; Steinman, R. M.; Fujii, S.-i., Dendritic cell maturation by innate lymphocytes coordinated stimulation of innate and adaptive immunity. J. exp. med. 2005, 202, 203-207.
Mau, J. L.; Lin, H. C.; Chen, C. C., Non-volatile components of several medicinal mushrooms. Food Res. Int. 2001, 34, 521-526.
Mitchell, D. A.; Berovic, M.; Krieger, N., Biochemical engineering aspects of solid state bioprocessing. Springer: 2000.
Nitschke, J.; Modick, H.; Busch, E.; Von Rekowski, R. W.; Altenbach, H.-J.; Mölleken, H., A new colorimetric method to quantify β-1, 3-1, 6-glucans in comparison with total β-1, 3-glucans in edible mushrooms. Food Chem. 2011, 127, 791-796.
Ogawa, K.; Tsurugi, J.; Watanabe, T., Complex of gel-forming β-1, 3-d-glucan with congored in alkaline solution. Chem. Lett. 1972, 689-692.
Ooijkaas, L. P.; Weber, F. J.; Buitelaar, R. M.; Tramper, J.; Rinzema, A., Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 2000, 18, 356-360.
Packer, L.; Wachtel-Galor, S.; Ong, C. N.; Halliwell, B., Herbal and Traditional Medicine: Biomolecular and Clinical Aspects. CRC Press: 2004.
Pandey, A., Solid-state fermentation. Biochem. Eng. J. 2003, 13, 81-84.
Papinutti, L., Effects of nutrients, pH and water potential on exopolysaccharides production by a fungal strain belonging to Ganoderma lucidum complex. Bioresour. Technol. 2010, 101, 1941-1946.
Rop, O.; Mlcek, J.; Jurikova, T., Beta-glucans in higher fungi and their health effects. Nutr. Rev. 2009, 67, 624-631.
Sato, M.; Sano, H.; Iwaki, D.; Kudo, K.; Konishi, M.; Takahashi, H.; Takahashi, T.; Imaizumi, H.; Asai, Y.; Kuroki, Y., Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. immunol. 2003, 171, 417-425.
Sensse, K.; Cramer, F., Über Einschlußverbindungen, XXI. Die Optische Rotationsdispersion von Komplexen der Cyclodextrine und der Amylose mit einigen Azofarbstoffen in wäßriger Lösung. Chem. Ber. 1969, 102, 509-521.
Stamets, P., Growing gourmet and medicinal mushrooms = [Shokuyō oyobi yakuyō kinoko no saibai] : a companion guide to The mushroom cultivator. Ten Speed Press: Berkeley, CA, 1993.
Stone, B.; Clarke, A., Chemistry and biology of (1, 3)-D-glucans. Victoria, Australia.: La Trobe University Press 1992, 236-239.
Suzuki, I.; Tanaka, H.; Kinoshita, A.; Oikawa, S.; Osawa, M.; Yadomae, T., Effect of orally administered β-glucan on macrophage function in mice. Int. J. Immunopharmacol. 1990, 12, 675-684.
Trinchieri, G., Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nature Reviews Immunology 2003, 3, 133-146.
Tsukada, C.; Yokoyama, H.; Miyaji, C.; Ishimoto, Y.; Kawamura, H.; Abo, T., Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of β-glucan. Cell. Immunol. 2003, 221, 1-5.
Vetvicka, V.; Thornton, B. P.; Ross, G. D., Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J. Clin. Invest. 1996, 98, 50.
Vetvicka, V.; Yvin, J. C., Effects of marine β− 1, 3 glucan on immune reactions. Int. Immunopharmacol. 2004, 4, 721-730.
Volman, J. J.; Ramakers, J. D.; Plat, J., Dietary modulation of immune function by β-glucans. Physiol. Behav. 2008, 94, 276-284.
Wasser, S., Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258-274.
Wessels, J.; Kreger, D.; Marchant, R.; Regensburg, B.; De Vries, O., Chemical and morphological characterization of the hyphal wall surface of the basidiomycete Schizophyllum Commune. Biochimica et Biophysica Acta (BBA)-General Subjects 1972, 273, 346-358.
Wessels, J. G., Tansley Review No. 45 Wall growth, protein excretion and morphogenesis in fungi. New Phytol. 1993, 123, 397-413.
Wood, P. J.; Fulcher, R., Specific interaction of aniline blue with (1→ 3)-β-D-glucan. Carbohydr. Polym. 1984, 4, 49-72.
Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X., A Comprehensive Review of the Structure Elucidation and Biological Activity of Triterpenoids from Ganoderma spp. Molecules 2014a, 19, 17478-17535.
Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; Zhang, L.; She, G., A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 2014b, 19, 17478-535.
Yang, F. C.; Liau, C. B., The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochem. 1998, 33, 547-553.
Young, R. E.; Thompson, R. D.; Larbi, K. Y.; La, M.; Roberts, C. E.; Shapiro, S. D.; Perretti, M.; Nourshargh, S., Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J. immunol. 2004, 172, 4493-4502.
Zhang, Y.; Xu, X.; Zhang, L., Dynamic viscoelastic behavior of triple helical Lentinan in water: Effect of temperature. Carbohydr. Polym. 2008, 73, 26-34.
Zhou, X.; Lin, J.; Yin, Y.; Zhao, J.; Sun, X.; Tang, K., Ganodermataceae: natural products and their related pharmacological functions. Am. j. Chin. med. 2007, 35, 559-574.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52390-
dc.description.abstract本研究針對三種影響靈芝中多醣及(1,3;1,6)-β-D-葡萄聚醣特性之因素進行探討,包含(一)菌種及菌株之影響、(二)培養方式之影響、(三)子實體生長過程之影響,係以松杉靈芝、赤芝子實體(各兩種菌株),松杉靈芝、赤芝菌絲體及不同生長時期之松杉靈芝子實體為材料,分析其熱水可溶性多醣特性,包含多醣萃取率、不可消化多醣組成分析、(1,3;1,6)-β-D-葡聚醣含量及分
支度、分子量(膠體層析)。八種靈芝子實體(包含赤芝FBGL02、FBGL08 及松杉靈芝FBGT01、FBGT07)及菌絲體(包含赤芝MGL08 及松杉靈芝MGT01-1、MGT01-2、MGT01-3)(1,3;1,6)-β-D-葡萄聚醣含量及分支度結果顯示,四種菌絲體樣品(1,3;1,6)-β-D-葡萄聚醣含量皆顯著高於四種子實體樣品,而在四種子實體樣品中,赤芝含量又高於松杉靈芝。膠體層析結果顯示,四種子實體熱水萃多醣均以低分子量區段(107K > Mw Da)為主,且比例皆高達82.2%以上,四種菌絲體以中分子量區段(708K > Mw > 107K Da)與低分子量區段為主;熱水萃
(1,3)-β-D-葡萄聚醣分子量區段比例在不論在子實體或菌絲體中皆以中分子量區段與低分子量區段為主。不同生長時期松杉靈芝子實體熱水萃總固形物、總醣及粗多醣皆隨生長期增加而有減少之趨勢,但(1,3;1,6)-β-D-葡萄聚醣含量及分支度均隨生長期增加
而增加,從第一期佔多醣中比例3.9% 至第五期25.2% 提升21.3%,且分支度也從0.16(第一期)提升至0.22(第五期),而鹼萃方法能夠增加(1,3;1,6)-β-D-葡萄聚醣萃取量,但會使其平均分支度大幅下降,此現象尤以二至四期子實體最為嚴重,平均分支度降低至0.06-0.09 間。而膠體層析結果顯示,無論在任何時期,水萃多醣以中分子量區段及低分子量區段為主,且隨生長期增加,高分子量區段(Mw > 708K Da)之比例有遞減之趨勢;水萃(1,3)-β-D-葡萄聚醣則隨生長期增加,高分子量區段比例上升且伴隨低分子量比例下降之趨勢。不可消化多醣組成分析結果顯示,各時期熱水萃粗多醣中含有38-51% 之α-葡萄聚醣,且β-葡萄聚醣在熱水可萃多醣中含量比例則隨生長期增加而有上升之趨勢,由第一期5.32%至第五期26.05%,提升20.73%,與前述酵素法結果相近。
zh_TW
dc.description.abstractThe present study investigated the characteristics of hot water extractable polysaccharides and (1,3;1,6)-β-D-glucans from, (1) fruiting bodies of Ganoderma lucidum and G. tsugae with two different strains respectively (FBGL02, FBGL08 and FBGT01, FBGT07), (2) mycelium of G.lucidum (MGL08) and G.tsugae (MGT01-1, MGT01-2, and MGT01-3), and (3) fruiting bodies of G. tsugae in different growing stages. Results showed that the amount of (1,3;1,6)-β-D-glucans in hot water extractable polysaccharides is significantly higher in mycelium culture than fruiting bodies and in fruiting bodies of G. lucidum than G.tsugae. The content of (1,3;1,6)-β-D-glucans, DB (degree of branching), and the ratio in polysaccharides increased as growing stages increased. Alkaline extraction would increased the amount of (1,3;1,6)-β-D-glucans by 154-357% in each growing stage though DB would dramatically drop to 0.06-0.09 in stage 2-5. The results of gel-filtration chromatography showed that the molecular weight distribution of hot water extractable polysaccharides of fruiting bodies in different growing stages were all mainly in MMF (medium molecular weight fraction) and LMF (low molecular weight fraction). The results of composition analysis of indigestible polysaccharides of fruiting bodies in different growing stages showed that the ratio of α-glucans in polysaccharides was up to 51.3% in stage 1 and 38-40% in stage 2 to 5, and the ratio of β-glucans in polysaccharides was proportional to the growing stages (from 5.32 to 26.05%).en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:13:33Z (GMT). No. of bitstreams: 1
ntu-104-R02641014-1.pdf: 1729371 bytes, checksum: 8eec2646d7d3358ede94fa4dfbe5c8bc (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 IV
圖目錄 VIII
表目錄 X
壹、 前言 1
貳、 文獻回顧 2
第一章、 靈芝簡介 2
1.1 靈芝的生長型態及特徵 2
1.2 靈芝的生物分類 2
1.3 靈芝組成分 3
1.3.1 化學成分 3
1.3.2 活性成分 3
1.3.2.1 多醣 3
1.3.2.2 三萜類 4
第二章、 靈芝栽培方法 5
2.1 傳統靈芝子實體栽種方法 5
2.2 靈芝菌絲體液態發酵培養 5
2.2.1 培養液成份 6
2.2.2 搖瓶速率 6
2.2.3 接觸空氣表面積 8
2.3 靈芝菌絲體固態發酵培養 8
第三章、 靈芝中之活性多醣 10
3.1 (1,3)-β-D-葡萄聚醣簡介 10
3.1.1 (1,3)-β-D-葡萄聚醣生物來源及基本結構 10
3.1.2 (1,3)-β-D-葡萄聚醣與真菌細胞壁的關係 12
3.1.2.1 真菌細胞壁結構 12
3.1.2.2 真菌菌絲根尖生長模式 14
3.1.3 環境對於(1,3)-β-D-葡萄聚醣高級結構之影響 16
3.1.4 (1,3)-β-D-葡萄聚醣的抗腫瘤活性及其機制 18
3.1.4.1 免疫系統 18
3.1.4.2 (1,3)-β-D-葡萄聚醣對先天免疫反應影響 19
3.1.4.3 (1,3)-β-D-葡萄聚醣對後天免疫反應影響 21
3.1.4.4 口服真菌β-葡萄聚醣之抗腫瘤機制 21
3.1.5 (1,3)-β-D-葡萄聚醣的定量方法 26
3.1.5.1 Aniline blue 螢光染色法 26
3.1.5.2 Congo red 可見光測定法 27
3.1.5.3 endo-與exo-(1,3)-β-D-Glucanase 28
3.1.5.4 Lyticase 與β-glucosidase, exo-(1,3)-β-glucanase 28
參、 實驗架構 30
肆、 材料與方法 31
第一章、 實驗材料 31
1.1 靈芝子實體及菌絲體樣品 31
1.1.1 不同生長階段松杉靈芝新鮮子實體 31
1.1.2 靈芝子實體及菌絲體乾燥粉末 31
第二章、 樣品製備方法 33
2.1 粗多醣製備 33
2.1.1 子實體 33
2.1.1.1 不同生長時期松杉靈芝子實體 33
2.1.1.1.1 熱水萃粗多醣 33
2.1.1.1.2 鹼萃粗多醣 33
2.1.1.2 乾燥子實體 34
2.1.2 乾燥菌絲體粉末 34
2.1.3 菌絲體液態培養 34
2.2 去除β-(1, 3)-葡聚醣之不可消化多醣製備 35
2.2.1 去除粗多醣中可消化性多醣及蛋白質 35
2.2.2 去除不可消化多醣中(1,3)-β-glucan 35
第三章、 試藥與儀器設備 36
3.1 化學藥品與試劑 36
3.2 標準品 37
3.3 酵素 37
3.4 儀器設備 37
第四章、 實驗方法 38
4.1 總固型物含量測定 38
4.2 總醣含量測定 38
4.3 酸性醣含量測定 38
4.4 去氧醣含量測定 39
4.5 蛋白質含量測定 39
4.6 總β-(1, 3)-glucan含量測定(Aniline Blue Assay) 39
4.7 (1,3;1,6)-β-D-glucan含量/分支度分析 40
4.7.1 檢體前處理 40
4.7.2 高效能陰離子交換層析分析 41
4.7.3 含量及分支度計算 41
4.8 分子量分布 42
第五章、 統計分析 43
伍、 結果與討論 44
第一章、 比較靈芝子實體與菌絲體菌種與菌株間可溶性多醣與(1,3;1,6)-β-D-葡萄聚醣特性差異 44
1.1 子實體 44
1.1.1 (1,3;1,6)-β-D-葡萄聚醣含量及分支度 44
1.1.2 水萃粗多醣及(1,3)-β-D-葡萄聚醣分子量分布 44
1.2 菌絲體 45
1.2.1 (1,3;1,6)-β-D-葡萄聚醣含量及分支度 45
1.2.2 水萃粗多醣及(1,3)-β-D-葡萄聚醣分子量分布 45
第二章、 培養方法對水萃多醣與(1,3;1,6)-β-D-葡萄聚醣特性影響 47
2.1 (1,3;1,6)-β-D-葡萄聚醣含量及分支度 47
2.2 分子量分布 48
第三章、 不同生長時期松杉靈芝子實體可溶性多醣含量與其分子特性 55
3.1 各生長階段靈芝子實體水分含量變化 55
3.2 各生長階段靈芝子實體熱水/鹼可萃多醣含量變化 57
3.3 各生長階段靈芝子實體 (1,3;1,6)-β-D-glucan含量/分支度變化 58
3.4 各生長階段靈芝子實體分子量分布變化 62
3.5 各生長階段靈芝子實體熱水可萃不可消化多醣醣組成分析 69
陸、 結論 72
柒、 參考文獻 74
dc.language.isozh-TW
dc.subject赤芝zh_TW
dc.subject水溶性多醣zh_TW
dc.subject6)-β-D-葡 萄聚醣zh_TW
dc.subject松杉靈芝zh_TW
dc.subject靈芝子實體生長期zh_TW
dc.subjectGanoderma lucidumen
dc.subjectGanoderma tsugaeen
dc.subjectfruiting body growing stagesen
dc.subjectwater-soluble polysaccharidesen
dc.subject6)-β-D-glucansen
dc.title不同生長階段靈芝子實體水溶性多醣特性zh_TW
dc.titleCharacteristics of Water-Soluble Polysaccharides from Fruiting Bodies of Ganoderma in Different Growing Stagesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧訓(Shin-lu),張永和(Yung-Ho Chang),邵貽沅(Yi-Yuan Shao),陳宏彰(Hong-Jhang Chen)
dc.subject.keyword松杉靈芝,赤芝,靈芝子實體生長期,水溶性多醣,(1,3,1,6)-β-D-葡 萄聚醣,zh_TW
dc.subject.keywordGanoderma lucidum,Ganoderma tsugae,fruiting body growing stages,water-soluble polysaccharides,(1,3,1,6)-β-D-glucans,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved