Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌(Been-Huang Chiang)
dc.contributor.authorChen-Pei Wuen
dc.contributor.author吳佩蓁zh_TW
dc.date.accessioned2021-06-15T16:11:43Z-
dc.date.available2025-12-31
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation第六章、 參考文獻
黃蘭菁、李貫廷、李育霖、楊偉勛、黃國晉 (2013)。2013年美國糖尿病學會臨床治療指引摘要。台北市醫師公會會刊,57,23-31。
周碧瑟、董道興、李佳琳、莊紹源、林敬恆、楊南屏 (2002)。台灣地區糖尿病流行病學。臺灣公共衛生雜誌,21,83-96。
Ahmed, F. E. (2003). Genetically modified probiotics in foods. Trends in biotechnology, 21(11), 491-497.
Alessi, D. R., & Cohen, P. (1998). Mechanism of activation and function of protein kinase B. Current opinion in genetics & development, 8(1), 55-62.
Alsayadi, M., Al Jawfi, Y., Belarbi, M., Soualem-Mami, Z., Merzouk, H., Sari, D. C., . . . Ghalim, M. (2014). Evaluation of Anti-Hyperglycemic and Anti-Hyperlipidemic Activities of Water Kefir as Probiotic on Streptozotocin-Induced Diabetic Wistar Rats. Journal of Diabetes Mellitus, 2014.
Association, A. D. (2008). Diagnosis and classification of diabetes mellitus. Diabetes care, 31(Supplement 1), S55-S60.
Atkinson, M. A., & Eisenbarth, G. S. (2001). Type 1 diabetes: new perspectives on disease pathogenesis and treatment. The Lancet, 358(9277), 221-229.
Bailey, C., & Day, C. (2004). Metformin: its botanical background. Practical Diabetes International, 21(3), 115-117.
Bandyopadhyay, G. K., Joseph, G. Y., Ofrecio, J., & Olefsky, J. M. (2005). Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes, 54(8), 2351-2359.
Bellengier, P., Richard, J., & Foucaud, C. (1997). Nutritional requirements of Leuconostoc mesenteroides subsp. mesenteroides and subsp. dextranicum for growth in milk. Journal of dairy research, 64(01), 95-103.
Beshkova, D., Simova, E., Simov, Z., Frengova, G., & Spasov, Z. (2002). Pure cultures for making kefir. Food Microbiology, 19(5), 537-544.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254.
Breuil, C., & Saddler, J. (1985). Comparison of the 3, 5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enzyme and microbial technology, 7(7), 327-332.
Chan, J. C., Malik, V., Jia, W., Kadowaki, T., Yajnik, C. S., Yoon, K.-H., & Hu, F. B. (2009). Diabetes in Asia: epidemiology, risk factors, and pathophysiology. Jama, 301(20), 2129-2140.
Chang, T.-J., Jiang, Y.-D., Chang, C.-H., Chung, C.-H., Yu, N.-C., & Chuang, L.-M. (2012). Accountability, utilization and providers for diabetes management in Taiwan, 2000–2009: An analysis of the National Health Insurance database. Journal of the Formosan Medical Association, 111(11), 605-616.
Cheng, Z., Pang, T., Gu, M., Gao, A.-H., Xie, C.-M., Li, J.-Y., . . . Li, J. (2006). Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochimica et Biophysica Acta (BBA)-General Subjects, 1760(11), 1682-1689.
DeFronzo, R. A., Gunnarsson, R., Björkman, O., Olsson, M., & Wahren, J. (1985). Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. Journal of Clinical Investigation, 76(1), 149.
Dey, D., Mukherjee, M., Basu, D., Datta, M., Roy, S. S., Bandyopadhyay, A., & Bhattacharya, S. (2005). Inhibition of insulin receptor gene expression and insulin signaling by fatty acid: interplay of PKC isoforms therein. Cellular Physiology and Biochemistry, 16(4-6), 217-228.
Dousset, X., & Caillet, F. (1993). Aspects microbiologiques et biochimisues de la fermentation du kéfir. MAN Microbiologie, aliments, nutrition, 11(4), 463-470.
Drucker, D. J., & Nauck, M. A. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet, 368(9548), 1696-1705.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
Ejtahed, H., Mohtadi-Nia, J., Homayouni-Rad, A., Niafar, M., Asghari-Jafarabadi, M., Mofid, V., & Akbarian-Moghari, A. (2011). Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. Journal of dairy science, 94(7), 3288-3294.
El Khamisy, A. E. S. (2010). Effect of bifidobacterium and lactobacillus acidophilus in diabetic rats. Paper presented at the The 5th Arab and 2nd International Annual Scientific Conference.
Fang, G., Poolman, B., & Konings, W. N. (2002). Production and utilization of peptides in Lactococcus lactis: [University Library Groningen][Host].
Farnworth, E. R. (2006). Kefir–a complex probiotic. Food Science and Technology Bulletin: Fu, 2(1), 1-17.
Favier, C. F., de Vos, W. M., & Akkermans, A. D. (2003). Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe, 9(5), 219-229.
Fröjdö, S., Vidal, H., & Pirola, L. (2009). Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792(2), 83-92.
Govers, R., Coster, A. C., & James, D. E. (2004). Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Molecular and Cellular Biology, 24(14), 6456-6466.
Hadisaputro, S., Djokomoeljanto, R., & Soesatyo, M. (2012). The effects of oral plain kefir supplementation on proinflammatory cytokine properties of the hyperglycemia Wistar rats induced by streptozotocin. Acta Med Indones, 44(2), 100-104.
Hardie, D. G., & Sakamoto, K. (2006). AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology, 21(1), 48-60.
Hertzler, S. R., & Clancy, S. M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. Journal of the American Dietetic Association, 103(5), 582-587.
Hofvendahl, K., & Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources 1. Enzyme and microbial technology, 26(2), 87-107.
Hood, S., & Zoitola, E. (1988). Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. Journal of Food Science, 53(5), 1514-1516.
Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860-867.
Hu, F. B. (2011). Globalization of Diabetes The role of diet, lifestyle, and genes. Diabetes care, 34(6), 1249-1257.
Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell metabolism, 5(4), 237-252.
Inzucchi, S. E. (2002). Oral antihyperglycemic therapy for type 2 diabetes: scientific review. Jama, 287(3), 360-372.
Kandler, O., & Kunath, P. (1983). A component of the microflora of Kefir. Systematic and applied microbiology, 4(2), 286-294.
Karylowski, O., Zeigerer, A., Cohen, A., & McGraw, T. E. (2004). GLUT4 is retained by an intracellular cycle of vesicle formation and fusion with endosomes. Molecular biology of the cell, 15(2), 870-882.
Kaul, K., Tarr, J. M., Ahmad, S. I., Kohner, E. M., & Chibber, R. (2013). Introduction to diabetes mellitus Diabetes (pp. 1-11): Springer.
Kimmel, S. A., Roberts, R. F., & Ziegler, G. R. (1998). Optimization of Exopolysaccharide Production byLactobacillus delbrueckii subsp. bulgaricusRR Grown in a Semidefined Medium. Applied and environmental microbiology, 64(2), 659-664.
Kong, K. L. (2009). Effects of kefirs on glycemic, insulinemic and satiety responses.
Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177-187.
Koroleva, N., & Robinson, R. (1991). Products prepared with lactic acid bacteria and yeasts. Therapeutic properties of fermented milks., 159-179.
Kraegen, E. W., Cooney, G. J., & Turner, N. (2008). Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proceedings of the National Academy of Sciences, 105(22), 7627-7628.
Kwak, H., Park, S., & Kim, D. (1996). Biostabilization of kefir with a nonlactose-fermenting yeast. Journal of dairy science, 79(6), 937-942.
Law, B. A., & Kolstad, J. (1983). Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek, 49(3), 225-245.
LeBrasseur, N. K., Kelly, M., Tsao, T.-S., Farmer, S. R., Saha, A. K., Ruderman, N. B., & Tomas, E. (2006). Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. American Journal of Physiology-Endocrinology and Metabolism, 291(1), E175-E181.
Lee, K. S., & Drescher, D. G. (1978). Fluorometric amino-acid analysis with o-phthaldialdehyde (OPA). International Journal of Biochemistry, 9(7), 457-467.
Liu, J.-R., Chen, M.-J., & Lin, C.-W. (2005). Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. Journal of agricultural and food chemistry, 53(7), 2467-2474.
Liu, J.-R., Lin, Y.-Y., Chen, M.-J., Chen, L.-J., & Lin, C.-W. (2005). Antioxidative activities of kefir. Asian-Aust. J. Anim. Sci, 18(4), 567-573.
Liu, J.-R., Wang, S.-Y., Chen, M.-J., Chen, H.-L., Yueh, P.-Y., & Lin, C.-W. (2006). Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters. British journal of nutrition, 95(05), 939-946.
Liu, J.-R., Wang, S.-Y., Lin, Y.-Y., & Lin, C.-W. (2002). Antitumor activity of milk kefir and soy milk kefir in tumor-bearing mice. Nutrition and cancer, 44(2), 183-187.
Liu, L., Xie, Y., & Lou, L. (2006). PI3K is required for insulin-stimulated but not EGF-stimulated ERK1/2 activation. European journal of cell biology, 85(5), 367-374.
Lopitz-Otsoa, F., Rementeria, A., Elguezabal, N., & Garaizar, J. (2006). Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev Iberoam Micol, 23(2), 67-74.
Lourens-Hattingh, A., & Viljoen, B. (2001). Growth and survival of a probiotic yeast in dairy products. Food Research International, 34(9), 791-796.
Luis, A., Lopez, E., & Lema, C. (1993). Microflora present in kefir grains of the Galician region. J. Dairy Res, 60, 263-267.
Lund, S., Holman, G., Schmitz, O., & Pedersen, O. (1995). Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proceedings of the National Academy of Sciences, 92(13), 5817-5821.
Ma, X., Hua, J., & Li, Z. (2008). Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. Journal of hepatology, 49(5), 821-830.
Margulis, L. (1997). From kefir to death Slanted Truths (pp. 83-90): Springer.
Marquina, D., Santos, A., Corpas, I., Munoz, J., Zazo, J., & Peinado, J. (2002). Dietary influence of kefir on microbial activities in the mouse bowel. Letters in applied microbiology, 35(2), 136-140.
Martin, B., Warram, J., Krolewski, A., Soeldner, J., Kahn, C., & Bergman, R. (1992). Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. The Lancet, 340(8825), 925-929.
Matar, C., LeBlanc, J. G., Martin, L., & Perdigon, G. (2003). Biologically active peptides released in fermented milk: role and functions. Handbook of fermented functional foods, 177-201.
Mierau, I., Kunji, E. R., Venema, G., & Kok, J. (1997). Casein and peptide degradation in lactic acid bacteria. Biotechnology and Genetic Engineering Reviews, 14(1), 279-302.
Narvhus, J. A., & Gadaga, T. H. (2003). The role of interaction between yeasts and lactic acid bacteria in African fermented milks: a review. International Journal of Food Microbiology, 86(1), 51-60.
Nevzorova, J., Bengtsson, T., Evans, B. A., & Summers, R. J. (2002). Characterization of the β‐adrenoceptor subtype involved in mediation of glucose transport in L6 cells. British journal of pharmacology, 137(1), 9-18.
Nishiumi, S., & Ashida, H. (2007). Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Bioscience, biotechnology, and biochemistry, 71(9), 2343-2346.
Ottogalli, G., Galli, A., Resmini, P., & Volonterio, G. (1973). [Microbiological and chemical composition and ultrastructure of Kefir granules]. Annali di Microbiologia ed Enzimologia (Italy).
Panten, U., Burgfeld, J., Goerke, F., Rennicke, M., Schwanstecher, M., Wallasch, A., . . . Lenzen, S. (1989). Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Biochemical pharmacology, 38(8), 1217-1229.
Panwar, H., Rashmi, H. M., Batish, V. K., & Grover, S. (2013). Probiotics as potential biotherapeutics in the management of type 2 diabetes–prospects and perspectives. Diabetes/metabolism research and reviews, 29(2), 103-112.
Pešić-Mikulec, D., & Niketić, G. B. (2009). Compositional characteristics of commercial yoghurt based on quantitative determination of viable lactic acid bacteria. Acta periodica technologica(40), 87-94.
Pintado, M. E., Da Silva, J., Fernandes, P. B., Malcata, F. X., & Hogg, T. A. (1996). Microbiological and rheological studies on Portuguese kefir grains. International journal of food science & technology, 31(1), 15-26.
Radke-Mitchell, L., & Sandine, W. (1984). Associative growth and differential enumeration of Streptococcus thermophilus and Lactobacillus bulgaricus: a review. Journal of Food Protection®, 47(3), 245-248.
Riddle, M. C., Rosenstock, J., & Gerich, J. (2003). The treat-to-target trial randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes care, 26(11), 3080-3086.
Robinson, R. K., & Batt, C. A. (1999). Encyclopedia of food microbiology: Academic press.
Rocic, P., Govindarajan, G., Sabri, A., & Lucchesi, P. A. (2001). A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. American Journal of Physiology-Cell Physiology, 280(1), C90-C99.
Rodrigues, K. L., Caputo, L. R. G., Carvalho, J. C. T., Evangelista, J., & Schneedorf, J. M. (2005). Antimicrobial and healing activity of kefir and kefiran extract. International journal of antimicrobial agents, 25(5), 404-408.
Rudich, A., Konrad, D., Török, D., Ben-Romano, R., Huang, C., Niu, W., . . . Bilan, P. (2003). Indinavir uncovers different contributions of GLUT4 and GLUT1 towards glucose uptake in muscle and fat cells and tissues. Diabetologia, 46(5), 649-658.
Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098-1101.
Sawada, K., Kawabata, K., Yamashita, T., Kawasaki, K., Yamamoto, N., & Ashida, H. (2012). Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells. Lipids Health Dis, 11(1), 36.
Schmidt, D., Frommer, W., Junge, B., Müller, L., Wingender, W., Truscheit, E., & Schäfer, D. (1977). α-Glucosidase inhibitors. Naturwissenschaften, 64(10), 535-536.
Schmitt, P., Vasseur, C., Phalip, V., Huang, D., Divies, C., & Prevost, H. (1997). Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Applied microbiology and biotechnology, 47(6), 715-718.
Shaw, R. J. (2013). Metformin trims fats to restore insulin sensitivity. Nature medicine, 19(12), 1570-1572.
Simova, E., Beshkova, D., Angelov, A., Hristozova, T., Frengova, G., & Spasov, Z. (2002). Lactic acid bacteria and yeasts in kefir grains and kefir made from them. Journal of Industrial Microbiology and Biotechnology, 28(1), 1-6.
Somkuti, G., & Steinberg, D. (1979). Adaptability of Streptococcus thermophilus to lactose, glucose and galactose. Journal of Food Protection®, 42(11), 881-887.
Storz, P., Döppler, H., Wernig, A., Pfizenmaier, K., & Müller, G. (1999). Cross‐talk mechanisms in the development of insulin resistance of skeletal muscle cells. European Journal of Biochemistry, 266(1), 17-25.
Takizawa, S., Kojima, S., Tamura, S., Fujinaga, S., Benno, Y., & Nakase, T. (1994). Lactobacillus kefirgranum sp. nov. and Lactobacillus parakefir sp. nov., two new species from kefir grains. International journal of systematic bacteriology, 44(3), 435-439.
Tallon, R., Bressollier, P., & Urdaci, M. C. (2003). Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Research in Microbiology, 154(10), 705-712.
Tas, T. K., EKINCI, F. Y., & GUZEL‐SEYDIM, Z. B. (2012). Identification of microbial flora in kefir grains produced in Turkey using PCR. International Journal of Dairy Technology, 65(1), 126-131.
Teruya, K., Yamashita, M., Tominaga, R., Nagira, T., Shim, S.-Y., Katakura, Y., . . . Shirahata, S. (2002). Fermented milk, Kefram-Kefir enhances glucose uptake into insulin-responsive muscle cells. Cytotechnology, 40(1-3), 107-116.
Teuber, M. (1995). The genus Lactococcus The genera of lactic acid bacteria (pp. 173-234): Springer.
Viljoen, B. C. (2001). The interaction between yeasts and bacteria in dairy environments. International Journal of Food Microbiology, 69(1), 37-44.
Weber, A. E. (2004). Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. Journal of medicinal chemistry, 47(17), 4135-4141.
Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., . . . Carling, D. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Current biology, 13(22), 2004-2008.
Yüksekdaǧ, Z. N., Beyath, Y., & Aslım, B. (2004). Metabolic activities of Lactobacillus spp. strains isolated from kefir. Food/Nahrung, 48(3), 218-220.
Yamamoto, N., Sato, T., Kawasaki, K., Murosaki, S., & Yamamoto, Y. (2006). A nonradioisotope, enzymatic assay for 2-deoxyglucose uptake in L6 skeletal muscle cells cultured in a 96-well microplate. Analytical biochemistry, 351(1), 139-145.
Yamamoto, N., Ueda, M., Sato, T., Kawasaki, K., Sawada, K., Kawabata, K., & Ashida, H. (2011). Measurement of glucose uptake in cultured cells. Current protocols in pharmacology, 12.14. 11-12.14. 22.
Yang, W., Lu, J., Weng, J., Jia, W., Ji, L., Xiao, J., . . . Ji, Q. (2010). Prevalence of diabetes among men and women in China. New England Journal of Medicine, 362(12), 1090-1101.
Zhou, B., Li, H., Xu, L., Zang, W., Wu, S., & Sun, H. (2013). Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-κB signaling pathway. Endocrinology, 154(3), 1055-1068.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52316-
dc.description.abstract糖尿病是一種終身性的疾病,可能會導致嚴重的併發症,其中,第二型糖尿病 (Type 2 diabetes mellitus) 佔全球糖尿病患者的 90%,胰島素阻抗為第二型糖尿病的重要特徵,導致血糖升高與脂肪代謝異常。克菲爾具有調節血糖、血脂以及抗發炎等生理活性,但其作用機制與具降血糖之生物活性物質仍不清楚。本研究採用呈現胰島素阻抗之 L6 肌肉細胞作為測試平台,針對傳統克弗爾與乳酸菌、酵母菌共培養之發酵乳,研究其對葡萄糖代謝之調節功效。研究結果顯示,克菲爾發酵時間越長,L6 細胞對葡萄糖的汲取量有顯著增加且具劑量效應,測其成分含量變化可以發現,隨著發酵時間增加,其胜肽鏈長逐漸變短、蛋白質水解率有顯著之提升,再經膜過濾 (M.W≦1 kDa) 處理後,分子量 ≦1 kDa在刺激葡萄汲取能力表現上,發酵後期的顯著差異不及發酵前期來得明顯,推測克弗爾水萃物中具調節血糖的物質可能為小分子蛋白質及胜肽,而這些小分子胜肽隨著發酵時間的增加,產量亦逐漸提升。此外,利用抑制劑試驗之結果顯示,傳統克弗爾於 96 小時發酵水萃物具活化AMPK分子傳導訊息,而傳統克弗爾於 12 及 24 小時發酵之水萃物與胰島素訊息傳導型態是類似的,主要是利用 PI3K 訊息傳導途徑顯著地影響葡萄糖汲取能力,於 37℃共培養克弗爾組別中,於 12 與 96 小時發酵水萃物不僅具有活化 PI3K 訊息分子之能力亦可活化非胰島素訊息傳導途徑 AMPK 訊息分子,使葡萄糖轉運具有加成性。本實驗進一步以陰離子交換層析分離純化克弗爾水萃物,測定區分物對刺激L6細胞對葡萄糖汲取之活性,結果顯示,區分物在 10 µg/ml 有助於刺激細胞汲取葡萄糖的能力,與僅經膜過濾處理之 100 µg/ml 水萃液具有相似之效果。接著,再以抑制劑探討有效區分層之分子傳導訊息,結果顯示,對刺激 L6 細胞汲取葡萄糖具有最佳效果之區分層 (fraction 5) 可藉由活化胰島素依賴型 PI3K 途徑與非胰島素依賴型 AMPK 途徑,提高葡萄糖汲取之能力,使葡萄糖轉運作用具有加成性,表示經陰離子交換層析之區分物具調節血糖之潛力,然而,具有調節血糖之有效成分組成為何,仍需待進一步確定。zh_TW
dc.description.abstractDiabetes mellitus (DM) is a predominant chronic disease which causes mortality of millions of people yearly. Insulin resistance is a key etiology of Type 2 DM. Kefir is a fermented milk which composed a specific mixture of bacteria and yeast cultures, and have received increasing attention as potential ingredients of health-promoting functional foods. Past studies revealed that kefir can improve diet-related chronic diseases, such as obesity, systemic inflammation, hyperglycemia, hypercholesterolemia and type 2 DM, but the exact mechanism is still unknown. In our study, a free fatty acid induced insulin resistant cell model was first established. We found that when pH is higher than 4.5, the lactic acid bacteria and the yeast in kefir could help each other grow up steadily. With longer fermentation time the glucose uptake activity of L6 cell became higher and along with dose response. According to results of ultrafiltration (1 kDa), it indicated that the active compound might be small molecular protein and peptide. The water extract compound from 12 hours and 96 hours fermentation under 37℃ not only activated AMPK signaling molecules, but also PI3K signaling molecules to induce GLUT4 translocation. The water extract compound from 12 hours and 24 hours fermentation of traditional kefir and 24 hours fermentation under 37℃ primary activated PI3K signaling molecules, the signaling molecules pathway is similar with insulin. The water extract compound from 96 hours fermentation of traditional kefir primary activated AMPK signaling molecules. Furthermore, the water crude extracts was fractionated by anion-exchange chromatography. It was found that the fraction 5 of co-culture kefir at 37℃ has high glucose uptake activity, and it both activated AMPK and PI3K signaling molecules to induce GLUT4 translocation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:11:43Z (GMT). No. of bitstreams: 1
ntu-104-R02641007-1.pdf: 5729315 bytes, checksum: a321a86175e958fe7899573eef009ba4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
謝誌 I
中文摘要 II
英文摘要 IV
目錄 V
圖目錄 IX
第一章、文獻回顧 1
第一節、糖尿病 1
1.1糖尿病的流行病學 1
1.2糖尿病之基本介紹 2
1.3糖尿病之分類 2
1.4糖尿病之診斷標準 4
1.5糖尿病之治療方式 5
第二節、胰島素阻抗與葡萄糖運送 8
2.1胰島素阻抗 8
2.2葡萄糖轉運作用 9
2.3胰島素訊息傳遞 9
2.4非胰島素依賴型訊息傳遞 10
第三節、克弗爾 12
3.1克弗爾之定義 12
3.2克弗爾之菌株 12
3.3克弗爾之生理功能 15
第四節、發酵菌株 16
4.1乳酸菌 16
4.2酵母菌 17
4.3共培養發酵 18
第二章、實驗目的與設計 19
第一節、實驗目的 19
第二節、實驗設計 19
2.1克弗爾的發酵製程 20
2.2克弗爾之基本成分分析與作用機制探討 21
2.3樣品組成分變化與血糖調節能力相關性之比對 22
第三章、材料與方法 23
第一節、實驗材料 23
1.1發酵基質 23
1.2發酵菌種 23
1.3細胞株來源 23
1.4藥品試劑 24
第二節、器材與儀器設備 26
第三節、實驗方法 28
3.1傳統克弗爾之製備 28
3.2共培養克弗爾之製備 28
3.3發酵乳水萃液之製備 30
3.4發酵乳成分分析 30
3.5發酵乳之組成變化與生物活性之關聯性 34
3.6骨骼肌細胞之培養 37
第四章、結果與討論 42
第一節、克弗爾之發酵製程 42
1.1發酵菌株之生長曲線 42
1.2克弗爾發酵過程中總乳酸菌及酵母菌之生長情形 44
1.3克弗爾發酵過程中pH值及可滴定酸之變化 47
1.4克弗爾發酵過程中還原糖含量之變化 49
1.5克弗爾發酵過程中總醣含量之變化 51
1.6克弗爾發酵之胜肽含量之變化 53
1.7克弗爾發酵過程中蛋白質水解率與胜肽鏈長之變化 55
第二節、骨骼肌細胞模式之建立 57
2.1骨骼肌細胞之分化 57
2.2以棕櫚酸誘導骨骼肌細胞發生胰島素阻抗之汲取去氧葡萄糖能力 58
第三節、探討不同發酵條件之克弗爾對汲取葡萄糖活性之影響 60
3.1評估克弗爾水萃物之血糖調節功能 60
3.2評估克弗爾水萃物於不同階段之細胞最適作用濃度 66
3.3評估不同發酵條件之克弗爾與葡萄糖汲取能力相關性 74
3.4以不同抑制劑探討克弗爾促進葡萄糖汲取可能之作用機制 75
第四節、樣品組成變化與血糖調節能力相關性之對比 78
4.1以分子量區分克弗爾水萃物之活性物質 78
4.2以離子交換層析法區分克弗爾水萃物之活性物質 81
4.3評估克弗爾區分物對細胞汲取葡萄糖能力之影響 84
4.4以不同抑制劑探討克弗爾區分物促進葡萄糖汲取可能之作用機制 85
第五章、 結論 87
第六章、 參考文獻 88


圖目錄
圖一、骨骼肌細胞中胰島素與非胰島素依賴性相關訊息傳遞機制 11
圖二、還原醣與 3,5-二硝基水楊酸之氧化還原反應 32
圖三、OPA法反應式 34
圖四、心肌黃酶 (diaphorase)-醯胺腺嘌呤二核苷酸磷酸 (NADPH) 系統 40
圖五、發酵菌株之生長曲線 43
圖六、傳統克弗爾(a)、於 25℃共培養克弗爾(b)、32℃共培養克弗爾(c),與37℃共培養克弗爾(d)於不同發酵時間點之菌株生長情形 46
圖七、不同發酵條件之克弗爾於不同發酵時間點,其 pH 值之變化 48
圖八、不同發酵條件之克弗爾於不同發酵時間點,其可滴定酸之變化 48
圖九、傳統克弗爾(a)、於 25℃共培養克弗爾(b)、32℃共培養克弗爾(c),與37℃共培養克弗爾(d),於不同發酵時間點之還原糖含量變化 50
圖十、傳統克弗爾(a)、於 25℃共培養克弗爾(b)、32℃共培養克弗爾(c),與37℃共培養克弗爾(d),於不同發酵時間點之總醣含量變化 52
圖十一、傳統克弗爾(a)、於 25℃共培養克弗爾(b)、32℃共培養克弗爾(c),與37℃共培養克弗爾(d),於不同發酵時間點之胜肽含量變化 54
圖十二、傳統克弗爾、於 25℃共培養克弗爾、32℃共培養克弗爾,與37℃共培養克弗爾,於不同發酵時間點之胜肽鏈長 56
圖十三、傳統克弗爾、於 25℃共培養克弗爾、32℃共培養克弗爾,與37℃共培養克弗爾,於不同發酵時間點之蛋白質水解率 56
圖十四、尚未分化肌母細胞 (a) 以及分化成熟呈長梭狀之肌管細胞 (b) 57
圖十五、棕櫚酸對胰島素所誘發之骨骼肌汲取去氧葡萄糖之能力。 59
圖十六、傳統克弗爾於不同發酵時間點,對刺激 L6細胞汲取葡萄糖之能力 62
圖十七、在 25℃共培養克弗爾於不同發酵時間點,對刺激 L6細胞汲取葡萄糖之能力 63
圖十八、在 32℃共培養克弗爾於不同發酵時間點,對刺激 L6細胞汲取葡萄糖之能力 64
圖十九、在 37℃共培養克弗爾於不同發酵時間點,對刺激 L6細胞汲取葡萄糖之能力 65
圖二十、 (a) 發酵初期 (log phase)、(b) 發酵中期 (stationary phase) 以及 (c) 發酵後期 (death phase) 之傳統克弗爾於不同劑量處理時,對刺激 L6細胞汲取葡萄糖之能力 67
圖二十一、(a) 發酵初期 (log phase)、(b) 發酵中期 (stationary phase) 以及 (c) 發酵後期 (death phase) 之25℃共培養組別於不同劑量處理時,對刺激 L6細胞汲取葡萄糖之能力 69
圖二十二、(a) 發酵初期 (log phase)、(b) 發酵中期 (stationary phase) 以及 (c) 發酵後期 (death phase) 之32℃共培養組別於不同劑量處理時,對刺激 L6細胞汲取葡萄糖之能力 71
圖二十三、(a) 發酵初期 (log phase)、(b) 發酵中期 (stationary phase) 以及 (c) 發酵後期 (death phase) 之 37℃共培養組別於不同劑量處理時,對刺激 L6細胞汲取葡萄糖之能力 73
圖二十四、不同發酵組別之克弗爾於發酵初期 (log phase)、發酵中期 (stationary phase) 以及發酵後期 (death phase) 水萃物,對刺激 L6細胞汲取葡萄糖之能力 74
圖二十五、不同抑制劑對胰島素和傳統克弗爾水萃物刺激葡萄糖汲取能力之影響 76
圖二十六、不同抑制劑對胰島素和在37℃共培養克弗爾水萃物,刺激葡萄糖汲取能力之影響 77
圖二十七、不同發酵組別之克弗爾於發酵中期 (stationary phase) 時,其水萃物經膜過濾 (ultrafiltration) 處理後,對刺激 L6細胞汲取葡萄糖之能力 79
圖二十八、不同發酵條件之克弗爾於發酵後期 (death phase) 時,其水萃物經膜過濾 (ultrafiltration) 處理後,對刺激 L6細胞汲取葡萄糖之能力 80
圖二十九、利用DEAE-Sepharose 陰離子交換層析法在連續鹽度梯度下,分離出在 37℃共培養克弗爾於 96 小時發酵水萃物之蛋白質層析圖 82
圖三十、利用DEAE-Sepharose 陰離子交換層析法在連續鹽度梯度下,分離出在 37℃共培養克弗爾於 96 小時發酵水萃物之總醣層析圖 83
圖三十一、在 37℃共培養克弗爾於 96 小時發酵之水萃物,經陰離子交換層析法所得之區分層 (fraction),對刺激L6細胞汲取葡萄糖之能力 84
圖三十二、不同抑制劑對胰島素與在 37℃共培養克弗爾於 96小時發酵之水萃物,其經陰離子交換層析所得之區分層 (fractions),對刺激 L6 汲取葡萄糖能力之影響 86
dc.language.isozh-TW
dc.title克弗爾對骨骼肌汲取葡萄糖能力之影響zh_TW
dc.titleEffect of Kefir on Glucose Uptake in Skeletal Muscleen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周正俊(Cheng-Chun Chou),陳錦樹(Chin-Shuh Chen),謝淑貞(Shu-Chen Hsieh)
dc.subject.keyword第 2 型糖尿病,胰島素阻抗,葡萄糖汲取能力,骨骼肌,克菲爾,共培養發酵,zh_TW
dc.subject.keywordType 2 diabetes mellitus,insulin resistance,glucose uptake,skeletal muscle,kefir,co-culture,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
5.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved