請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52182完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳洵毅(Hsun-Yi Chen) | |
| dc.contributor.author | Chih-Wei Chang | en |
| dc.contributor.author | 張智幃 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:09:09Z | - |
| dc.date.available | 2020-08-25 | |
| dc.date.copyright | 2015-08-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-19 | |
| dc.identifier.citation | 1. de Leon, C.P., et al., Redox flow cells for energy conversion. Journal of Power Sources, 2006. 160(1): p. 716-732.
2. Skyllas-Kazacos, M., et al., Progress in Flow Battery Research and Development. Journal of the Electrochemical Society, 2011. 158(8): p. R55-R79. 3. Hazza, A., D. Pletcher, and R. Wills, A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) - Part I. Preliminary studies. Physical Chemistry Chemical Physics, 2004. 6(8): p. 1773-1778. 4. Lopezatalaya, M., et al., OPTIMIZATION STUDIES ON A FE/CR REDOX FLOW BATTERY. Journal of Power Sources, 1992. 39(2): p. 147-154. 5. Codina, G., et al., DEVELOPMENT OF A 0.1 KW POWER ACCUMULATION PILOT-PLANT BASED ON AN FE/CR REDOX FLOW BATTERY .1. CONSIDERATIONS ON FLOW-DISTRIBUTION DESIGN. Journal of Power Sources, 1994. 48(3): p. 293-302. 6. Ge, S.H., B.L. Yi, and H.M. Zhang, Study of a high power density sodium polysulfide/bromine energy storage cell. Journal of Applied Electrochemistry, 2004. 34(2): p. 181-185. 7. Chieng, S.C., M. Kazacos, and M. Skyllas-Kazacos, PREPARATION AND EVALUATION OF COMPOSITE MEMBRANE FOR VANADIUM REDOX BATTERY APPLICATIONS. Journal of Power Sources, 1992. 39(1): p. 11-19. 8. Kazacos, M., M. Cheng, and M. Skyllas-Kazacos, VANADIUM REDOX CELL ELECTROLYTE OPTIMIZATION STUDIES. Journal of Applied Electrochemistry, 1990. 20(3): p. 463-467. 9. Pletcher, D. and R. Wills, A novel flow battery - A lead acid battery based on an electrolyte with soluble lead(II) - III. The influence of conditions on battery performance. Journal of Power Sources, 2005. 149: p. 96-102. 10. Scanlon, D.O., et al., Nature of the Band Gap and Origin of the Conductivity of PbO2 Revealed by Theory and Experiment. Physical Review Letters, 2011. 107(24). 11. Mindt, W., ELECTRICAL PROPERTIES OF ELECTRODEPOSITED PBO2 FILMS. Journal of the Electrochemical Society, 1969. 116(8): p. 1076-&. 12. Ruetschi, P., INFLUENCE OF CRYSTAL-STRUCTURE AND INTERPARTICLE CONTACT ON THE CAPACITY OF PBO2 ELECTRODES. Journal of the Electrochemical Society, 1992. 139(5): p. 1347-1351. 13. Angstadt, R.T., C.J. Venuto, and P. Ruetschi, ELECTRODE POTENTIALS AND THERMAL DECOMPOSITION OF ALPHA- AND BETA-PBO2. Journal of the Electrochemical Society, 1962. 109(3): p. 177-184. 14. Abaci, S., et al., Electrosynthesis of 4,4 '-dinitroazobenzene on PbO2 electrodes. Journal of Applied Electrochemistry, 2002. 32(2): p. 193-196. 15. Velichenko, A.B. and D. Devilliers, Electrodeposition of fluorine-doped lead dioxide. Journal of Fluorine Chemistry, 2007. 128(4): p. 269-276. 16. Ho, J.C.K., et al., STRUCTURE INFLUENCE ON ELECTROCATALYSIS AND ADSORPTION OF INTERMEDIATES IN THE ANODIC O2 EVOLUTION AT DIMORPHIC ALPHA-BPO2 AND BETA-PBO2. Journal of Electroanalytical Chemistry, 1994. 366(1-2): p. 147-162. 17. Amadelli, R., et al., Influence of the electrode history and effects of the electrolyte composition and temperature on O-2 evolution at beta-PbO2 anodes in acid. Journal of Electroanalytical Chemistry, 2002. 534(1): p. 1-12. 18. Pletcher, D., et al., A novel flow battery - A lead-acid battery based on an electrolyte with soluble lead(II) V. Studies of the lead negative electrode. Journal of Power Sources, 2008. 180(1): p. 621-629. 19. Wills, R.G.A., et al., Developments in the soluble lead-acid flow battery. Journal of Applied Electrochemistry, 2010. 40(5): p. 955-965. 20. Oury, A., et al., PbO2/Pb2+ cycling in methanesulfonic acid and mechanisms associated for soluble lead-acid flow battery applications. Electrochimica Acta, 2012. 71: p. 140-149. 21. Verde, M.G., et al., Achieving high efficiency and cyclability in inexpensive soluble lead flow batteries. Energy & Environmental Science, 2013. 6(5): p. 1573-1581. 22. Pletcher, D. and R. Wills, A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) - Part II. Flow cell studies. Physical Chemistry Chemical Physics, 2004. 6(8): p. 1779-1785. 23. Collins, J., et al., A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm x 10 cm flow cell. Journal of Power Sources, 2010. 195(6): p. 1731-1738. 24. Oury, A., A. Kirchev, and Y. Bultel, A numerical model for a soluble lead-acid flow battery comprising a three-dimensional honeycomb-shaped positive electrode. Journal of Power Sources, 2014. 246: p. 703-718. 25. Banerjee, A., et al., A soluble-lead redox flow battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors. Bulletin of Materials Science, 2013. 36(1): p. 163-170. 26. Sires, I., et al., The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions. Electrochimica Acta, 2010. 55(6): p. 2163-2172. 27. Li, X., D. Pletcher, and F.C. Walsh, Electrodeposited lead dioxide coatings. Chemical Society Reviews, 2011. 40(7): p. 3879-38 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52182 | - |
| dc.description.abstract | 此論文所探討的重點著重於大型儲能裝置-鉛酸液流電池的研究與初步規模化及元件開發。希望能藉由本研究開發出低成本的大型儲能裝置,進而大眾化該產品。讓住家和工廠藉由智慧電網和鉛酸液流電池裝置的整合,達成調節供電量與用電量的差異,以更有效利用能源。
本研究著重於鉛酸液流電池的正負極材料開發以及添加劑的應用,研發出可承受高電流密度的電極以及延長循環充放電壽命次數,讓鉛酸液流電池最終能夠規模化。我們發現,正極材料使用自製石墨板、負極使用鎳板能得到較佳的電池性能,而加入十六烷基三甲銨和氟化鈉添加劑則分別能解決負極產物鉛枝晶和改善正極表面二氧化鉛附著及氧氣生成的情形發生。最後,我們在正極表面鍍上一層β-PbO2能夠避免副產物氧氣的產生,達成延長電池能夠長時間循環的效果。以能量效率50%以上為基準,該表面改質電極長時間循環充放電次數約為140次左右,比起選用為標準的商用碳複合電極的100次高出許多,可以發現本研究做出最適化的電極材料及前處理能夠有效的延長電極循環的壽命。 | zh_TW |
| dc.description.abstract | This thesis focuses on material and component development and system expansion of a lead acid redox flow battery, a promising large scale energy storage device. We aim to reduce the cost of this energy storage device, so as to facilitate its commercialization. Through integration of power grid and the developed energy storage device, we expect to achieve better load leveling and efficient energy utilization.
In this research we concentrated on materials development, electrochemical analyses, additives study, and system expansion for a lead acid redox flow battery. With this research effort, the electrodes are found to be able to endure higher current density and cyclability of the battery is extended. Better battery performance is achieved by using graphite electrode as the positive electrode, nickel plate as the negative electrode, hexadecyl trimethyl ammonium hydroxide as the leveling agent to prevent the growing of lead dendrite, and sodium fluoride as the surface smoother to restrain oxygen evolution. In order to further reduce formation of oxygen on the positive electrode, a layer of β-PbO2 is pre-deposited on the positive electrode before cycling. We found this pretreatment extends the cycle life of the battery to 140 times and maintains the energy efficiency at above 50%, which is much better than a reference system with commercialized composite carbon electrode utilized in fuel cell systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:09:09Z (GMT). No. of bitstreams: 1 ntu-104-R02631042-1.pdf: 8826483 bytes, checksum: 19354c1c5062dc5d5e6fb67ed28ec813 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝…………………………………………………………………………………….………….……….….i
中文摘要…………………………………………………..……………………………...……….……...ii 英文摘要……………………………………………………………………………..……...………….iii 章節目錄………………………………………………………………………………….…….…...…….iv 圖目錄………………………………………………………………………………………………………..vii 表目錄……………………………………………………………………………………….………….xi 第一章 前言……………………………………………………………………………………..…1 1.1 研究背景………………………………………………………………………………..…1 1.2 研究目的……………………………………………………………………….............3 第二章 文獻探討………………………………………………………………………..........4 2.1 大型儲能裝置與智慧微電網的結合………………………..………........4 2.2 鉛酸液流電池簡介…………………………………………………………..……...7 2.2.1液流電池發展與特色…………………………………………….………..7 2.2.2鉛酸液流電池與一般有分隔膜之液流電池的運作與特性…………………………………………………………………………………....8 2.2.3鉛酸液流電池和鉛蓄電池的比較…………………………………..11 2.3 電極表面化學反應性質…………………………………..…………….…….....14 2.3.1二氧化鉛…………………..………………………………….………………...14 2.3.2正極表面化學反應機構…………………………………….……..….…15 2.3.3負極表面鉛晶現象…………………………………………..…..………..17 2.4 鉛酸液流電池電解液pH大小對循環效率的影響性……..……….19 2.5 鉛酸液流電池材料性質…………..……….…………….…………..…...….…21 第三章 研究方法…………………………………………………..…………….….…..…… 25 3.1 實驗前製作業與電池架構………………………………….…….…………..25 3.1.1電解液製造……………………………………………………..………….…….25 3.1.2燒杯實驗………………………………………………..………………….….…..26 3.1.3電池殼循環實驗……………………………..……………………….…..…...27 3.2 自製碳電極元件開發…………………………….………………………..….…..…32 3.2.1電極製作方法-熱壓法…………………………………....................…32 3.3.2電極製作方法-有機溶劑溶解混合法………….………………..…..33 3.3.3熱壓法與有機溶劑溶解混合法之比較………………..….….…...36 3.2.4自製碳電極材料電極厚度探討………..………………………....…..36 3.2.5自製碳、網狀玻璃質碳、石墨板電極的比較……..……….…38 3.3 負極材料的改進………….…..………………………………………….………..……39 3.4 電解液濃度對化學反應影響性……………………………….…………………40 3.5 集電板的選擇……………………..…………………………………………….….…...41 3.6 電解液添加劑…………………………..……………………………..……….…….….42 3.6.1平整劑-氫氧化十六烷基三甲銨……...………..……….…...…..…..42 3.6.2二氧化鉛穩定劑-氟化鈉…....................................................43 3.7 石墨電極表面鍍晶型β-PbO2前處理實驗……………..………….…..….45 3.7.1比較鍍α-PbO2、β-PbO2 以及未鍍晶體的石墨電極 情況下電極的性能情形…………………………………….….….....…45 3.7.2 β-PbO2長晶電流密度討論……………………..……..……..…...……47 3.8 電化學原理與計算……..……….……..………………………..………...….…….48 3.8.1 電極介紹…………………………………………………………..….…….…..48 3.8.2 定電流充放電………………………………………….…..………….……..49 3.8.3 循環伏安法………………………….……………………………….……....50 3.8.4 電化學阻抗分析………………………………………….…………..……51 3.8.5 X-射線繞射分析………………………….…..………………….…….....51 3.8.6 表面粗糙度測量…………….……...................................……..53 3.8.7 X光光電子能譜儀……….……..............................................54 3.9 儀器介紹…………………………………………………………………………..……55 3.10 藥品種類………………………………………………………………………..….…57 第四章 結果與討論………………………………………………………………….……..59 4.1 電極元件開發………………………………………………………………………..59 4.1.1正極材料…………………………………………………………………..…....59 4.1.1.a電極製作 熱壓法與有機溶劑溶解混合法…….…..59 4.1.1.b自製碳電極不同電極厚度探討…………………..……..60 4.1.1.c自製碳、網狀玻璃質碳、石墨板電極的比較…..63 4.1.2負極材料…………………..…………………………………………………...70 4.1.3 不同電解液濃度對化學反應的影響…………………………….72 4.2 電極板………………………….…………………………………………………....….75 4.3 使用添加劑增進電池效能………………….………………………..…….…76 4.3.1 加入平整劑 氧化十六烷基三甲胺…………………………......76 4.3.2 加入氟化鈉……………………………………….……………………….….83 4.4 石墨電極表面鍍β-PbO2晶型…………………..………………………….…87 4.5 β-PbO2長晶電流密度討論………………..…………………………….….....99 4.6 電池殼循環實驗……………………..…………………………………..……...109 4.7 最佳化自製石墨電極與複合石墨板電極的比較……………..…112 4.8 兩小時深度充放電實驗……………………………………………………....114 第五章 結論…………………………..……………..…….................................116 第六章 參考文獻………………………………..…………………………................119 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電極材料 | zh_TW |
| dc.subject | 鉛酸液流電池 | zh_TW |
| dc.subject | 平整劑 | zh_TW |
| dc.subject | 枝晶 | zh_TW |
| dc.subject | 二氧化鉛 | zh_TW |
| dc.subject | electrode material | en |
| dc.subject | lead acid redox flow battery | en |
| dc.subject | leveling agent | en |
| dc.subject | dendrite | en |
| dc.subject | lead dioxide | en |
| dc.title | 鉛酸液流電池元件與材料開發、
電化學檢測暨規模化研究 | zh_TW |
| dc.title | Materials Development, Electrochemical Analyses and, System Expansion of a Lead Acid Redox Flow Battery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭彥廷,侯嘉洪 | |
| dc.subject.keyword | 鉛酸液流電池,平整劑,枝晶,二氧化鉛,電極材料, | zh_TW |
| dc.subject.keyword | lead acid redox flow battery,leveling agent,dendrite,lead dioxide,electrode material, | en |
| dc.relation.page | 121 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 8.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
