請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52012
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
dc.contributor.author | Ying-Jie Kuo | en |
dc.contributor.author | 郭英傑 | zh_TW |
dc.date.accessioned | 2021-06-15T14:02:59Z | - |
dc.date.available | 2020-09-17 | |
dc.date.copyright | 2015-09-17 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | 陳家慧。人參皂苷生物轉化物對脂肪細胞攝取葡萄糖之影響。國立台灣大學生物資源暨農學院食品科技研究所碩士論文。2011。
李卓璟。以液相層析串聯質譜探討羅漢果皂素在酸與酵母菌模式中的結構轉換。國立台灣大學生物資源暨農學院食品科技研究所碩士論文。2009。 陳慶源。人參皂苷的生物轉換及其發酵產品的開發。食品工業發展研究所,2006,38,11,11-27。 K. Hostettmann and A. Marston, Saponin, Cambridge University Press. 1995. Innocenzo Muzzalupo, Food Industry. InTech. 2013 Attele, A. S., Wu, J. A., & Yuan, C. S. (1999). Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol, 58(11), 1685-1693. Baeg, I. H., & So, S. H. (2013). The world ginseng market and the ginseng (Korea). J Ginseng Res, 37(1), 1-7. doi: 10.5142/jgr.2013.37.1 Bałdygaa, J., M., J., Dzięgielewskab, M., & Żochowskaa, M. (2012). Disruption of yeast cells with ultrasound. 14th European Conference on Mixing. Botstein, D., & Fink, G. R. (1988). Yeast: an experimental organism for modern biology. Science, 240(4858), 1439-1443. Cheng, K.C., Lin, J.T., Wu, J.Y., & Liu, W.H. (2010). Isoflavone Conversion of Black Soybean by Immobilized Rhizopus spp. Food Biotechnology, 24(4), 312-331. doi: 10.1080/08905436.2010.524459 Cherry, J. M., Adler, C., Ball, C., Chervitz, S. A., Dwight, S. S., Hester, E. T., . . . Botstein, D. (1998). SGD: Saccharomyces Genome Database. Nucleic Acids Res, 26(1), 73-79. Chiu, C. H., Wang, R., Lee, C. C., Lo, Y. C., & Lu, T. J. (2013). Biotransformation of mogrosides from Siraitia grosvenorii Swingle by Saccharomyces cerevisiae. J Agric Food Chem, 61(29), 7127-7134. doi: 10.1021/jf402058p Choi, Y. H., Chin, Y. W., & Kim, Y. G. (2011). Herb-drug interactions: focus on metabolic enzymes and transporters. Arch Pharm Res, 34(11), 1843-1863. doi: 10.1007/s12272-011-1106-z Christensen, L. P. (2009). Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res, 55, 1-99. doi: 10.1016/S1043-4526(08)00401-4 Dai, Z., Wang, B., Liu, Y., Shi, M., Wang, D., Zhang, X., . . . Zhang, X. (2014). Producing aglycons of ginsenosides in bakers' yeast. Sci Rep, 4, 3698. doi: 10.1038/srep03698 De Deken, R. H. (1966). The Crabtree effect: a regulatory system in yeast. J Gen Microbiol, 44(2), 149-156. Devit, M. J., Waddle, J. A., & Johnston, M. (1997). Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell, 8(8), 1603-1618. Gao, F., Zhang, J.-M., Wang, Z.-G., Peng, W., Hu, H.-L., & Fu, C.-M. (2013). Biotransformation, a Promising Technology for Anti-cancer Drug Development. Asian Pacific Journal of Cancer Prevention, 14(10), 5599-5608. doi: 10.7314/apjcp.2013.14.10.5599 Greig, D., & Leu, J. Y. (2009). Natural history of budding yeast. Curr Biol, 19(19), R886-890. doi: 10.1016/j.cub.2009.07.037 Gu, Y., Wang, G. J., Wu, X. L., Zheng, Y. T., Zhang, J. W., Ai, H., . . . Jia, Y. W. (2010). Intestinal absorption mechanisms of ginsenoside Rh2: stereoselectivity and involvement of ABC transporters. Xenobiotica, 40(9), 602-612. doi: 10.3109/00498254.2010.500744 Han, J. Y., Kim, H. J., Kwon, Y. S., & Choi, Y. E. (2011). The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol, 52(12), 2062-2073. doi: 10.1093/pcp/pcr150 Hasegawa, H. (2004). Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J Pharmacol Sci, 95(2), 153-157. Hasegawa, H., Sung, J. H., & Benno, Y. (1997). Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Medica, 63(5), 436-440. doi: 10.1055/s-2006-957729 Hsu, B. Y., Chen, C. H., Lu, T. J., & Hwang, L. S. (2013). Bioconversion of ginsenosides in the american ginseng ( xi yang shen) extraction residue by fermentation with lingzhi ( ling zhi, ganoderma lucidum). J Tradit Complement Med, 3(2), 95-101. doi: 10.4103/2225-4110.110416 Hsu, B. Y., Lu, T. J., Chen, C. H., Wang, S. J., & Hwang, L. S. (2013). Biotransformation of ginsenoside Rd in the ginseng extraction residue by fermentation with lingzhi (Ganoderma lucidum). Food Chem, 141(4), 4186-4193. doi: 10.1016/j.foodchem.2013.06.134 Jarosz, D. F., Lancaster, A. K., Brown, J. C., & Lindquist, S. (2014). An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell, 158(5), 1072-1082. doi: 10.1016/j.cell.2014.07.024 Kohler, R. E. (1972). The reception of Eduard Buchner's discovery of cell-free fermentation. J Hist Biol, 5(2), 327-353. Leung, K. W., & Wong, A. S. (2010). Pharmacology of ginsenosides: a literature review. Chin Med, 5, 20. doi: 10.1186/1749-8546-5-20 Li, K., Chen, X., Xu, J., Li, X., & Zhong, D. (2005). Liquid chromatography/tandem mass spectrometry for pharmacokinetic studies of 20(R)-ginsenoside Rg3 in dog. Rapid Commun Mass Spectrom, 19(6), 813-817. doi: 10.1002/rcm.1862 Lou, D.-W., Saito, Y., & Jinno, K. (2005). Solid-Phase Extraction and High-Performance Liquid Chromatography for Simultaneous Determination of Important Bioactive Ginsenosides in Pharmaceutical Preparations. Chromatographia, 62(7-8), 349-354. doi: 10.1365/s10337-005-0640-6 Nevoigt, E. (2008). Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 72(3), 379-412. doi: 10.1128/MMBR.00025-07 Oleszek, W. A. (2002). Chromatographic determination of plant saponins. J Chromatogr A, 967(1), 147-162. Park, C. S., Yoo, M. H., Noh, K. H., & Oh, D. K. (2010). Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol, 87(1), 9-19. doi: 10.1007/s00253-010-2567-6 Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Front Mol Biosci, 1, 17. doi: 10.3389/fmolb.2014.00017 Qi, L. W., Wang, C. Z., & Yuan, C. S. (2011). Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry, 72(8), 689-699. doi: 10.1016/j.phytochem.2011.02.012 Qian, T., & Cai, Z. (2010). Biotransformation of ginsenosides Rb1, Rg3 and Rh2 in rat gastrointestinal tracts. Chin Med, 5, 19. doi: 10.1186/1749-8546-5-19 Qian, T., Cai, Z., Wong, R. N., Mak, N. K., & Jiang, Z. H. (2005). In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B Analyt Technol Biomed Life Sci, 816(1-2), 223-232. doi: 10.1016/j.jchromb.2004.11.036 Quan, L. H., Min, J. W., Yang, D. U., Kim, Y. J., & Yang, D. C. (2012). Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by recombinant beta-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biotechnol, 94(2), 377-384. doi: 10.1007/s00253-011-3861-7 Regodón Mateos, J. A., Pérez-Nevado, F., & Ramírez Fernández, M. (2006). Influence of Saccharomyces cerevisiae yeast strain on the major volatile compounds of wine. Enzyme Microb Technol, 40(1), 151-157. doi: 10.1016/j.enzmictec.2005.10.048 Satora, P., T., T., & E., T. (2010). Enological profile of Saccharomyces cerevisiae isolated from fermenting plum mashes. Acta Sci. Pol., Technol. Aliment, 9(1), 33-44. Schmidt, S., Rainieri, S., Witte, S., Matern, U., & Martens, S. (2011). Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl Environ Microbiol, 77(5), 1751-1757. doi: 10.1128/AEM.01125-10 Tabas, I., Beatini, N., Chen, L. L., Su, W. C., Puar, M. S., Dugar, S., & Clader, J. W. (1991). Identification and characterization of an acyl-CoA:triterpene acyltransferase activity in rabbit and human tissues. Journal of Lipid Research, 32(10), 1689-1698. Tawab, M. A., Bahr, U., Karas, M., Wurglics, M., & Schubert-Zsilavecz, M. (2003). Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos, 31(8), 1065-1071. doi: 10.1124/dmd.31.8.1065 Wang, Y., Zhao, W., Wu, X., & Zhang, Y. (2008). Studies on the biotransformation of ginsenoside Rg3 by an active microorganism isolated from ginseng root soil in Changbai Mountain. Asian J. Tradit. Med., 3(5), 186-192. Wu, T., Wang, N., Zhang, Y., & Xu, X. (2013). Advances in the study on microbial fermentation and transformation of traditional Chinese medicine. Afr. J. Microbiol. Res., 7(17), 1644-1650. doi: 10.5897/AJMRx12.012 Xiong, J., Sun, M., Guo, J., Huang, L., Wang, S., Meng, B., & Ping, Q. (2009). Active absorption of ginsenoside Rg1 in vitro and in vivo: the role of sodium-dependent glucose co-transporter 1. J Pharm Pharmacol, 61(3), 381-386. doi: 10.1211/jpp/61.03.0014 Xu, Q. F., Fang, X. L., & Chen, D. F. (2003). Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol, 84(2-3), 187-192. doi: 10.1016/s0378-8741(02)00317-3 Yan, X., Fan, Y., Wei, W., Wang, P., Liu, Q., Wei, Y., . . . Zhou, Z. (2014). Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Res, 24(6), 770-773. doi: 10.1038/cr.2014.28 Yang, D. C., Yang, K. J., & Choi, E. C. (2001). Production of Red Ginseng Specific Ginsenosides (Rg2, Rg3, Rh1 and Rh2) from Agrobacterium - transformed Hairy Roots of Panax ginseng by Heat Treatment. J. Photosci., 8(1), 19-22. Yang, L. Q., Wang, B., Gan, H., Fu, S. T., Zhu, X. X., Wu, Z. N., . . . Meng, Z. Y. (2012). Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharm Drug Dispos, 33(8), 425-436. doi: 10.1002/bdd.1806 Yang, X. (2012). Relationship of Intestinal Bacterial Biotransformation and Active Components of Traditional Chinese Medicine. Medicinal & Aromatic Plants, 01(08). doi: 10.4172/2167-0412.1000e139 Yu, K., Ma, Y., Shao, Q., Qu, H., & Cheng, Y. (2007). Simultaneously determination of five ginsenosides in rabbit plasma using solid-phase extraction and HPLC/MS technique after intravenous administration of 'SHENMAI' injection. J Pharm Biomed Anal, 44(2), 532-539. doi: 10.1016/j.jpba.2007.01.032 Zhang, H., & Cheng, Y. (2006). Solid-phase extraction and liquid chromatography-electrospray mass spectrometric analysis of saponins in a Chinese patent medicine of formulated Salvia miltiorrhizae and Panax notoginseng. J Pharm Biomed Anal, 40(2), 429-432. doi: 10.1016/j.jpba.2005.07.010 Zhang, Y. C., Pi, Z. F., Liu, C. M., Song, F. R., Liu, Z. Q., & Liu, S. Y. (2012). Analysis of Low-polar Ginsenosides in Steamed Panax Ginseng at High-temperature by HPLC-ESI-MS/MS. Chem. Res. Chinese Universities, 28(1), 31-36. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52012 | - |
dc.description.abstract | 人蔘皂苷(ginsenosides)是人蔘的主要活性成分之一,然而人蔘皂苷的生物可利用率低,本研究目的為利用酵母菌(Saccharomyces cerevisiae)進行人蔘皂苷生物轉換(Biotransformation),以期獲得生物轉換率較高的小分子人蔘皂苷。本實驗將固相萃取管柱(Solid phase extract column)分離純化的1000 μg/mL人蔘精粹物與完整營養培養基(YPD)混合培養野生型酵母菌,超音波細胞破碎儀破碎酵母菌細胞,萃取胞內外物質後利用液相層析串聯式電灑游離多次質譜(HPLC�ESI tandem MS)鑑定酵母菌胞內外人蔘皂苷分子碎片。結果發現培養第6天時偵測到人蔘皂苷Rb1濃度自0.69 ± 0.018 μM顯著降低至0.49 ± 0.038 μM(p<0.001),人蔘皂苷Rd濃度自0.19 ± 0.006 μM顯著上升至0.44 ± 0.029 μM(p<0.001),人蔘皂苷Rg3濃度自1.01 ± 0.087 μM顯著降低至0.70 ± 0.036 μM(p<0.001),並且偵測到胞內具有人蔘皂苷Rg3,顯示酵母菌可能具有將人蔘皂苷進行生物轉換的能力並可能具有人蔘皂苷Rg3的運輸子基因,有潛力做為人蔘皂苷運輸子的篩選平臺。 | zh_TW |
dc.description.abstract | Ginsenosides are one of the primary bioactive substrates in ginseng. However, ginsenosides have low bioavailability. The purpose of this research is to investigate biotransformation of ginsenosides in yeast, Saccharomyces cerevisiae. We incubated wild-type yeast cells in YPD with 1000 μg/mL commercial ginseng essence product. Yeast cellswere sonicated to disrupt cell walls and ginsenosides were analyzed using HPLC/ESI tandem MS. The results indicated a significant decrease in ginsenosides Rb1 from 0.69 ± 0.018 μM to 0.49 ± 0.038μM(p<0.001), an increase in Rd from 0.19 ± 0.006 μM to 0.44 ± 0.029 μM(p<0.001), and an decrease in Rg3 from 1.01 ± 0.087 μM to 0.70 ± 0.036 μM (p<0.001)in the YPD medium after 6 days fermentation. Intracellular ginsenoside Rg3 was also detected. We therefore propose that Saccharomyces cerevisiae may have the ability to biotransform and uptake ginsenosides, and has the capacity to function as a ginsenosides transporter genes screening platform. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T14:02:59Z (GMT). No. of bitstreams: 1 ntu-104-R01641034-1.pdf: 3994584 bytes, checksum: 2b45aa3dea29b3fce22bf582d0ae3700 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 壹、 前言 5
貳、 文獻回顧 6 第一節、 人蔘皂苷(Ginsenosides) 6 一、人蔘的簡介 6 二、人蔘皂苷的結構 8 三、人蔘皂苷的萃取與分析 15 四、人蔘皂苷藥物動力學與代謝 19 第二節、 酵母菌(Saccharomyces cerevisiae) 26 一、酵母菌的簡介 26 二、酵母菌的應用 26 第三節、生物轉換作用(Biotransformation) 33 一、 生物轉換作用的定義與應用 33 二、 中藥草的生物轉換作用 33 參、 研究目的與實驗架構 37 肆、 材料與方法 39 第一節、 實驗材料與儀器設備 39 一、 商業人蔘精華液粉末 39 二、 實驗酵母菌株 39 三、 試劑、試藥與配方 40 四、 儀器設備與耗材 41 第二節、 實驗方法 45 一、 酵母菌的培養 45 二、 滅菌條件 45 三、 酵母菌在各濃度人蔘精萃物培養基下的生長曲線 45 四、 人蔘皂苷的萃取與化學分析 46 五、 酵母菌對人蔘皂苷的生物轉換試驗 51 六、 酵母菌的超音波細胞震碎儀總時間長度條件試驗 51 七、 網路資料庫 52 八、 酵母菌作為人蔘皂苷運輸子之篩選平台 52 九、 酵母菌胞內人蔘皂苷之定量分析 52 十、 統計分析 53 伍、 結果與討論 54 第一節、 人蔘皂苷成份分析 54 一、 人蔘皂苷鑑定 54 二、 不同人蔘粉末來源樣品中的皂苷種類 65 三、 胞外與胞內人蔘皂苷樣品線性範圍與檢量線製作 67 四、 人蔘皂苷粗萃物以及精萃物粉末的產率 70 五、 酵母菌在各濃度人蔘精萃物培養基下的生長曲線 71 六、 人蔘精萃物粉末回收率試驗 72 七、 酵母菌對人蔘皂苷的生物轉換試驗 73 八、 分析酵母菌胞內外二醣或一醣人蔘皂苷成份 79 九、 利用酵母菌做為人蔘皂苷運輸子之篩選平台 87 十、 篩選特定酵母菌進行胞內人蔘皂苷之定量分析 89 陸、 結論 92 柒、 參考文獻 94 | |
dc.language.iso | zh-TW | |
dc.title | 利用基因剔除的酵母菌進行人蔘皂苷的生物轉化作用 | zh_TW |
dc.title | Biotransformation of Ginsenosides in Saccharomyces cerevisiae | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂廷璋,黃學聰,方翠筠,陳宏彰,謝淑貞 | |
dc.subject.keyword | 酵母菌,人蔘皂?,運輸子基因,生物轉換,液相層析串聯式電灑游離多次質譜, | zh_TW |
dc.subject.keyword | Saccharomyces cerevisiae,ginsenosides,transporter gene,HPLC/ESI tandem MS,biotransformation, | en |
dc.relation.page | 100 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 3.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。