請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51956
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂學士 | |
dc.contributor.author | Po-Hung Kuo | en |
dc.contributor.author | 郭柏宏 | zh_TW |
dc.date.accessioned | 2021-06-15T13:59:31Z | - |
dc.date.available | 2018-07-17 | |
dc.date.copyright | 2018-07-17 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-20 | |
dc.identifier.citation | References:
Chapter 1: 1.1.1. Hacking the human OS,' Spectrum, IEEE , vol.52, no.6, pp.31,31, June 2015 1.2.1. Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N, et al. 3D multifunctional integumentary membranes for spatiotempo- ral cardiac measurements and stimulation across the entire epicardium. Nat Commun 2014;5:3329. Chapter 2: 2.3.1. Tao Yin, Haigang Yang, Quan Yuan, and Guoping Cui, “Noise analysis and simulation of chopper amplifier,” APCCAS 2006. 2.3.2. BurkeM, Gleeson D (2000) A micropower dry-electrode ECG preamplifier, IEEE T, Bio-Med Eng. 47(2):155–162, Feb. 2000. 2.3.3. PallasAreny R, Webster J (1993) AC instrumentation amplifier for bioimpedance measurements, IEEE Trans Bio-Med Eng. 40(8):830–833, Aug. 1993. 2.3.4. Spinelli E, Martinez N, Mayosky M, Pallas-Areny R (2004) A novel fully differential biopotential amplifier with DC suppression. IEEE Trans Bio-Med Eng. 51(8):1444–1448, Aug 2004. 2.3.5. Spinelli E, Pallas-Areny R, Mayosky M (2003) AC-coupled front-end for biopotential measurements. IEEE Trans Bio-Med Eng. 50(3):391–395, March 2003. 2.3.6. Huijsing JH (2001) Operational amplifiers: theory and design. Kluwer Academic, Springer; 1 edition (December 2000). 2.3.7. E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, no. 4, pp. 287–294, Apr. 1987. 2.3.8. G. Nicollini and C. Guadiani, “A 3.3-V 800-nV noise, gain-programmable CMOS microphone preamplifier design using yield modeling technique,” IEEE J. Solid-State Circuits, vol. 28, no. 8, pp. 915–920, Aug. 1993. 2.4.1. Behzad et. al, “A fully integrated MIMO multiband direct conversion CMOS transceiver for WLAN applications (802.11n),” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2795-2808, Dec. 2007. 2.4.2. J.-Y. Chen, M. P. Flynn and J. P. Hayes, “A Fully integrated auto-calibrated super-regenerative receiver in 0.13μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1976-1985, Sep. 2007. 2.4.3. Y.-T. Lin, T. Wang, S.-S. Lu and G.-W. Huang, “A 0.5 V 3.1 mW Fully Monolithic OOK Receiver for Wireless Local Area Sensor Network ,” IEEE International Asian Solid-State Circuit Conference, 2005. 2.5.1. P. Cong, N. Chaimanonart,W. H. Ko, and D. J. Young,“A Wireless and Batteryless 130 milligram 300 μW 10-bit Implantable Blood Pressure Sensing Microsystem for Real-time Genetically Engineered Mice Monitoring”,ISSCC, 2009, pp. 428-429. 2.5.2. S. Ayazian, V. A. Akhavan, E. Soenen, and A. Hassibi,” A Photovoltaic-Driven and Energy-Autonomous CMOS ImplantableSensor,” IEEE Trans. Biomed. Circuits and systems, vol. 6, pp. 336-343, Aug. 2012. 2.6.1. Deisseroth, K., Feng, G.; Majewska, A. K.; Miesenbock, G.; Ting, A.; Schnitzer, M. J. (2006). 'Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits'. Journal of Neuroscience 26 (41): 10380–6. Chapter 3: 3.1.1. Kitabchi, AE; Umpierrez, GE; Miles, JM; Fisher, JN (Jul 2009). 'Hyperglycemic crises in adult patients with diabetes.'. Diabetes Care 32 (7): 1335–43. 3.1.2. 'Diabetes Fact sheet N°312'. WHO. October 2013. Retrieved25 March 2014. 3.1.3. Shoback, edited by David G. Gardner, Dolores (2011). 'Chapter 17'.Greenspan's basic & clinical endocrinology (9th ed.). New York: McGraw-Hill Medical. 3.1.4. Williams textbook of endocrinology (12th ed.). Philadelphia: Elsevier/Saunders. pp. 1371–1435. 3.1.5. Kenny C (April 2014). 'When hypoglycemia is not obvious: diagnosing and treating under-recognized and undisclosed hypoglycemia'. Primary care diabetes 8 (1): 3–11. 3.1.6. Verrotti A, Scaparrotta A, Olivieri C, Chiarelli F (December 2012). 'Seizures and type 1 diabetes mellitus: current state of knowledge'. European journal of endocrinology 167 (6): 749–58. 3.2.1. Rober A. Peura, “Blood Glucose Biosensors-A Review”, Medical Instrusment Design, p.p51-64 3.2.2. Ming Lei, Babak Ziaie, Eric Nuxoll, Kristóf Iván, Zoltán Noszticzius , and Ronald A. Siegel, “Integration of Hydrogels with Hard and Soft Microstructures” , Journal of Nanoscience and Nanotechnology Vol. 7,780-789, 2007 3.3.1. Vijayalakshmi Sridhar, Kenichi Takahata, “A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer”, Sensors and Actuators A 155 (2009) 58–65 3.3.2. MING LEI, ANTONIO BALDI, ERIC NUXOLL, RONALD A. SIEGEL, and BABAK ZIAIE, “A Hydrogel-Based Implantable Micromachined Transponder for Wireless Glucose Measurement” , DIABETES TECHNOLOGY & THERAPEUTICS, Volume 8, Number 1, 2006 3.3.3. Ming Lei, Antonio Baldi, Eric Nuxoll, Ronald A. Siegel, Babak Ziaie, “Hydrogel-based microsensors for wireless chemical monitoring” , Biomed Microdevices (2009) 11:529–538 3.3.4. R. N. Simons, F. A. Miranda, J. D. Wilson, and R. E. Simons, “Wearable Wireless Telemetry System for Implantable Bio-MEMS Sensors”, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug 30-Sept 3, 2006. 3.3.5. C.K. Chan and et al., “High-performance lithium battery anodes using silicon nanowires”, Nature Nanotechnology, vol.3 (1), pp. 31-35, Jan.2008. 3.3.6. M-Y Cheng, X-H Huang, C-W Ma and Y-J Yang, “A flexible capacitive tactile sensing array with floating electrodes” , J. Micromech. Microeng. 19 (2009) 115001 (10pp) 3.4.1. C. Stagni et al., “A Fully Electronic Label-Free DNA Sensor Chip,” IEEE SENSORS JOURNAL, VOL. 7, NO. 4, pp.577-585,APRIL 2007. 3.4.2. Byunghun Leea, Kang-Ho Leea, Jeong-Oen Leea, Mi-Jin Sohnb, Suk-Hwan Choia, Se-Won Wanga, Jun-Bo Yoona, and Gyu-Hyeong Choa, “An Electronic DNA Sensor Chip using Integrated Capacitive Read- out Circuit”, 32nd Annual International Conference of the IEEE EMBS, p.p.6547-6550, 2010 3.4.3. Claudio Stagni, et al.,” CMOS DNA Sensor Array With Integrated A/D Conversion Based on Label-Free Capacitance Measurement”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 12, DECEMBER 2006 3.4.4. C. H. Chen, R. Z. Hwang, L. S. Huang, S. Lin, H. C. Chen, Y. C. Yang, Y. T. Lin, S. A. Yu, Y. H. Wang, N. K. Chou, and S. S. Lu, “A wireless bio- MEMS sensor for c-reactive protein detection based on nanomechanics,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 562–563. 3.4.5. Chun-Hao Chen, Rong-Zhang Hwang, Long-Sun Huang, Shi-Ming Lin, Hsiao-Chin Chen, Yu-Che Yang, Yu-Tso Lin, Shih-An Yu, Yo-Sheng Lin, Yiao-Hong Wang, Nai-Kuan Chou, and Shey-Shi Lu, “A wireless bio- MEMS sensor for c-reactive protein detection based on nanomechanics,” in IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 2, FEBRUARY 2009. 3.4.6. Yao-Joe Yang, Yu-Jie Huang, Hsin-Hung Liao, Tao Wang, Pen-Li Huang, Chii-Wan Lin, Yao-Hong Wang, Shey-shi Lu,, “A Release-on-Demand Wireless CMOS Drug Delivery SoC Based on Electrothermal Activation Technique,” ISSCC 2009, D17-02, 2009. Chapter 4: 4.1. A. Manickam, et al., 'A CMOS electrochemical impedance spectroscopy biosensor array for label-free biomolecular detection,' ISSCC Dig. Tech. Papers, pp. 130-131, Feb., 2010. 4.2. M. Lei, et al., 'Hydrogel-based microsensors for wireless chemical monitoring,' Biomed Microdevices, vol.11(3), pp. 529-538, Jun. 2009. 4.3. S. Gambini, et al., 'A CMOS 10kpixel baseline-free magnetic bead detector with column-parallel readout for miniaturized immunoassays,' ISSCC Dig. Tech. Papers, pp. 126-128, Feb., 2012. 4.4. J.-C. Kuo, et al., “A capacitive immunosensor using on-chip electrolytic pumping and magnetic washing techniques for point-of-care applications,” Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on , pp. 809-812, Jan., 2014. 4.5. P.-H. Kuo, et al., 'A remotely controlled locomotive IC driven by electrolytic bubbles and wireless powering,' ISSCC Dig. Tech. Papers, pp. 322-323, Feb., 2014. 4.6. P.P. Liu, et al., 'Magnetic Relaxation Detector for Microbead Labels,' IEEE Journal of Solid-State Circuits, vol.47, no.4, pp. 1056-1064, Apr., 2012. Chapter 5: 5.1. [Online]. Available: http://www.proteus.com/. 5.2. [Online]. Available: http://www.mchips.com/products/products_drugdelivery.html. 5.3. Y. J. Yang, Y. J. Huang, H. H. Liao, T. Wang, P. L. Huang, C. W. Lin, Y. H. Wang, and S. S. Lu, “A release-on-demand wireless CMOS drug delivery SoC based on electrothermal activation technique,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 288–289, Feb. 2009. 5.4. P. L. Huang, P. H. Kuo, Y. J. Huang, H. H. Liao, Y. J. Yang, T.Wang, Y.-H. Wang, and S.-S. Lu, “A controlled-release drug delivery system on a chip using electrolysis,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1578–1587, Mar. 2012. 5.5. D. Pivonka, A. Yakovlev, A. Poon, and T. Meng, “A mm-sized wirelessly powered and remotely controlled locomotive implant,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 6, pp. 523–532, Dec. 2012. 5.6. H. Li, G. Yan, and G. Ma, “An active endoscopic robot based on wireless power transmission and electromagnetic localization,” Int. J. Med. Robotics Comput. Assist. Surg., vol. 4, pp. 355–367, 2008. 5.7. B. Lenarts and R. Puers, “An inductive power link for a wireless endoscope,” Biosensors and Bioelectronics, vol. 22, pp. 1390–1395, 2007. 5.8. B. Kim, S. Lee, J. H. Park, and J. O. Park, “Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs),” IEEE/ASME Trans.Mechatronics, vol. 10, no. 1, pp. 77–86, Feb. 2005. 5.9. H. Park, S. Park, E. Yoon, B. Kim, J. Park, and S. Park, “Paddling based microrobot for capsule endoscopes,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 3377–3382 Apr. 2007. 5.10. A. Menciassi,A.Moglia, S. Gorini,G. Pernorio, C. Stefanini, and P.Dario, “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng., vol. 15, no. 11, pp. 2045–2055, Nov. 2005. 5.11. P. Glass, E. Cheung, and M. Sitti, “A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives, ” IEEE Trans. Biomed. Eng., vol. 55, no. 12, pp. 2759–2767, Dec. 2008. 5.12. J. B. Mathieu, G. Beaudoin, and S. Martel, “Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system,” IEEE Trans. Biomed. Eng., vol. 53, no. 2, pp. 292–299, Feb. 2006. 5.13. G. M. Wakefield, “Magnetically propelled capsule endoscopy,” U.S. Patent US2004199054. 5.14. F. Carpi, S. Galbiati, and A. Carpi, “Controlled Navigation of Endoscopic Capsules: Concept and Preliminary Experimental Investigations,” IEEE Trans. Biomed. Eng., vol. 54, no. 11, pp. 2028–2036, Nov. 2007. 5.15. P. H. Kuo, J. Y. Hsieh,Y. C. Huang, Y. J. Huang, R. D. Tsai, T. Wang, H. W. Chiu, and S. S. Lu, “A Remotely-Controlled Locomotive IC Driven by Electrolytic Bubbles and Wireless Powering,” ISSCC Dig. Tech. Papers, pp. 322-323, Feb. 2014. 5.16. S. C. Chan, C. R. Chen, C. H. Liu, “A bubble-activated micropump with high-frequency flow reversal,” Sensors and Actuators A: Physical, vol. 163, issue 2, pp. 501-509, Oct. 2010. 5.17. J. T. Santini Jr, et. al., “A controlled-release microchip,” Nat., vol. 397, pp. 335–338, 1999. 5.18. J. M. Manloney, et. al., “Electrothermally activate microchips for implantable drug delivery and biosensing,” J. Controlled Release, Vol. 109, pp. 244–255, 2005. 5.19. X. Xie, L. Rieth, R. Caldwell, M. Diwekar, P. Tathireddy, R. Sharma, and F. Solzbacher, “Long-Term Bilayer Encapsulation Performance of Atomic Layer Deposited Al2O3 and Parylene C for Biomedical Implantable Devices,” IEEE Trans. Biomed. Eng., vol. 60, no. 10, pp. 2943–2951, Oct. 2013. 5.20. T. J. Toung, et. al, “Volume of air in a lethal venous air embolism,” Anesthesiology, vol. 94, no. 2, pp. 360–361, Feb. 2001. 5.21. M. Dole, F. R. Wilson, and W. P. Fife, “Hyperbaric hydrogen therapy: a possible treatment for cancer,” Sci., vol. 190, no. 4210, pp. 152–154, Oct. 1975. 5.22. I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K. I. Katsura, Y. Katayama, S. Asoh, and S. Ohta, “Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxiz oxygen radicals,” Nat. Med., vol. 13, no. 6 pp. 688–694, May, 2007. 5.23. B. M. Buchholz, D. J. Kaczorowski, R. Sugimoto, R. Yang, Y. Wang, T. R. Billiar, K. R. Mccurry, A. J. Bauer, and A. Nakao, “Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury,” Nat., vol. 8, no. 10, pp. 2015–2024, Oct. 2008. 5.24. E. Y. Chow, C. L. Yang, A. Chlebowski, S. Moon, W. J. Chappell, and P. P. Irazoqui, “Implantable wireless telemetry boards for in vivo transocular transmission,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 3200–3208, 2008. 5.25. P.Vaillancourt, A. Djemouai, J. F. Harvey, and M. Sawan, “EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant,” in Proc. IEEE EMBS Conf., vol. 6, pp. 2499–2502, 1997. 5.26. K. Finkenzeller, “RFID Handbook,” London, U.K.: Wiley, 2003. 5.27. C. Sauer, M. Stanaćević, G. Cauwenberghs, and N. Thakor, “Power harvesting and telemetry in CMOS for implanted devices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2605–2613, Dec. 2005. 5.28. M. Catrysse, B. Hermans, and R. Puers, “An inductive power system with integrated bidirectional data transmission,” in Proc. XVII Eurosensors, Sep. 21–24, pp. 843–846, 2003. 5.29. A. Sedra, and K. C. Smith, “Microelectronic Circuits,” 5th ed., Oxford, 2004. 5.30. B. Razavi, “Design of Analog CMOS Integrated Circuits,” Int. ed., McGraw-Hill, 2001. 5.31. [Online]. Available: http://datasheets.maxim-ic.com/en/ds/MAX1473.pdf. 5.32. A. Behzad, K. A. Carter, H.-M. Chien, S. Wu, M.-A. Pan, C. P. Lee, Q. Li, J. C. Leete, S. Au, M. S. Kappes, Z. Zhou, D. Ojo, L. Zhang, A. Zolfaghari, J. Castanada, H. Darabi, B. Yeung, A. Rofougaran, M. Rofougaran, J. Trachewsky, T. Moorti, R. Gaikwad, A. Bagchi, J. S. Hammerschmidt, J. Pattin, J. J. Rael, and B. Marholev, “A fully integrated MIMO multiband direct conversion CMOS transceiver for WLAN applications (802.11n),” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2795–2808, Dec. 2007. 5.33. A. Vouilloz, M. Declercq, and C. Dehollain, “A low-power CMOS superregenerative receiver at 1 GHz,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 440–451, Mar. 2001. 5.34. J. Y. Chen, M. P. Flynn, and J. P. Hayes, “A fully integrated autocalibrated super-regenerative receiver in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1976–1985, Sep. 2007. 5.35. D. C. Daly, and A. P. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1003–1011, May 2007. 5.36. C. H. Chen, R. Z. Hwang, L. S. Huang, S. Lin, H. C. Chen, Y. C. Yang, Y. T. Lin, S. A. Yu, Y. H. Wang, N. K. Chou, and S. S. Lu, “A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics,” in Proc. IEEE Int. Solid-State Circuits Conf., pp. 376–377, Feb. 2006. 5.37. Y. T. Lin, Y. S. Lin, C. H. Chen, H. C. Chen, Y. C. Yang, and S. S. Lu, “A 0.5 V biomedical system-on-a-chip for intra-body communication system,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 690–699, Feb. 2011. 5.38. H. W. Chiu, M. L. Lin, C. W. Lin, I. H. Ho, W. T. Lin, P. H. Fang, Y. C. Lee, Y. R. Wen, and S. S. Lu, “Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 350–359, Dec. 2010. 5.39. C. C. Johnson and A. W. Guy, “Nonionizing electromagnetic wave effects in biological materials and systems,” Proc. IEEE, vol. 60, no. 6, pp. 692–718, Jun. 1972. 5.40. ICNRP, “Guidelines for Limiting to time varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” International Commission on Non-Ionizing Radiation Protection, 1997. Chapter 6: 6.1. Levine H (1997) Rest heart rate and life expectancy. J Am Coll Cardiol 30: 1104–1106. 6.2. Yu Y, Zhang J, Liu J (2013) Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS One 8: e58771. 6.3. Rizki TM (1978) The circulatory system and associated cells and tissues. The Genetics and Biology of Drosophila 2: 397–452. 6.4. Papaefthmiou C and Theophilidis G (2001) An in vitro method for recording the electrical activity of the isolated heart of the adult Drosophila melanogaster. In Vitro Cell Dev. Biol. Anim. 37: 445-449. 6.5. Thayer JF, Lane RD (2009) Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33: 81–88. 6.6. Gao Y, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 7: e45485. 6.7. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, et al. (2008) Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18: 1097–1104. 6.8. Chi YM, Jung TP, Cauwenberghs G (2010) Dry-contact and noncontact biopotential electrodes: Methodological review. Biomed Eng IEEE Rev 3: 106–119. 6.9. Baba A, Burke M (2008) Measurement of the electrical properties of ungelled ECG electrodes. J Biol Biomed Eng 3: 89-97. 6.10. Neuman M (1988) Biopotential electrodes. Med Instrum Appl Des 1: 189–240. 6.11. Sanyal S, Consoulas C, Kuromi H, Basole A, Mukai L, et al. (2005) Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability. Genetics 169: 737–750. 6.12. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34: 1–15. 6.13. Lalevée N, Monier B, Sénatore S, Perrin L, Sémériva M (2006) Control of cardiac rhythm by ORK1, a Drosophila two-pore domain potassium channel. Curr Biol 16: 1502–1508. 6.14. Ocorr K, Reeves NL, Wessells RJ, Fink M, Chen HSV, et al. (2007) KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci U S A 104: 3943–3948. 6.15. Sanyal S, Jennings T, Dowse H, Ramaswami M (2006) Conditional mutations in SERCA, the Sarco-endoplasmic reticulum Ca2+-ATPase, alter heart rate and rhythmicity in Drosophila. J Comp Physiol B 176: 253–263. 6.16. Ma L, Bradu A, Podoleanu AG, Bloor JW (2010) Arrhythmia caused by a Drosophila tropomyosin mutation is revealed using a novel optical coherence tomography instrument. PLoS One 5: e14348. 6.17. Campan R (1972) Light-induced heart-beat disturbances: comparative study in Calliphora vomitoria (Linnaeus 1758) (Diptera) and Nemobius sylvestris (Bosc 1792) (Orthoptera). Monit Zool Ital 6: 269-289. 6.18. Marik PE (2013) Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth 27: 121–134. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51956 | - |
dc.description.abstract | 對於未來更有效率的醫療服務提升, 本篇論文提出4種整合生醫感測致動技術, 微機電半導體後製程與CMOS系統單晶片(System on a Chip, SoC)電路設計之生醫感測系統。在第一顆晶片CMOS MEMS連續式血糖感測SoC (ISCAS 2012)中, 一個9 mm2的CMOS感測晶片透過CMOS MEMS技術將葡萄糖敏感之高分子Hydrogel材料整合於 MEMS Capacitive Bio-sensor中, 透過血糖濃度變化所造成Hydrogel的膨脹收縮特性改變Bio-sensor電容值, 能連續監測血糖變化. 第二顆晶片為智慧CMOS MEMS全血快速篩檢SoC (ISSCC 2015), 在8.89mm2的面積內實現Highly Integrated Lab-on-a Chip, 並透過Chopper Amplifier類比感測電路與微控器實現智慧全自動血液快速篩檢晶片, 搭配不同之Bio-probe抗體能夠快速檢測多種Biomarkers. 第三顆晶片透過電解液體生成氣泡進而產生動力, 此具移動力量之CMOS Locomotive SoC (ISSCC 2014)提供了一個能夠搭載Bio-sensor & Bio-actuator的體內移動式醫療晶片平台, 欲用於植入式醫療應用. 而在基礎醫學研究探討上, 我們嘗試建立利用液態金屬電極GaIn之非侵入式果蠅心電(ECG)訊號感測系統(PLoS One 2014)。在系統架構上本篇論文是利用整合生醫感測器(Biosensor), 類比前端電路(Analog front end circuit), 類比數位轉換器(Analog-to-digital converter), 微控制器(Microcontroller)與數位訊號處理單元(Digital signal processing unit)和無線收發機(Wireless transceiver)成一生醫感測系統, 並透過0.35與0.18um製程實現晶片實作。 預期利用這些生醫感測SoC晶片能為人類提供下一世代的醫療服務技術,並提升醫療資源使用之效率。 | zh_TW |
dc.description.abstract | To improve efficiency of future medical service, this paper proposes four integrated biomedical system on a chip (SoC) by using MEMS post-process and CMOS IC technology. In the first chip, a 9 mm2 CMOS MEMS continuous glucose sensing SoC (ISCAS 2012) has been designed by integrating glucose-sensitive molecular hydrogel material with a MEMS capacitive bio-sensor by using CMOS MEMS technology. Hydrogel's expansion and contraction characteristics caused by glucose concentration changes can change capacitance of biosensor. By continuously reading out the capacitance change, human’s glucose concentration can be monitored preciously and continuously. The second chip is the smart CMOS assay SoC (ISSCC 2015), which implements the highly integrated Lab-on-a Chip technologies in an area of 8.89 mm2 die. With using different antibodies, the chip integrated chopper amplifier and microcontroller can quickly detect a variety of biomarkers of human’s whole blood. The third chip is a locomotive SoC (ISSCC 2014). By applying voltage on the water, the electrolysis generates bubbles, which provides the energy for chip’s movement. The locomotive SoC can be integrated with biosensors and bio-actuators as an medical platform for the advanced implantable application in the future. In the forth part, for the fundamental medical research, we have attempted to establish a non-invasive drosophila electrocardiogram (ECG) signal sensing system (PLoS One 2014) by using liquid metal electrode GaIn. The structure of this paper is based on integrating the biosensor, analog front-end circuit, analog-to-digital converter, microcontroller, digital signal processing unit and the wireless transceiver as biomedical sensing SoCs for different medical applications. To implement the SoCs, the CMOS 0.35 and 0.18 um technologies are adopted in this paper. It is expected that using these biomedical sensing SoC can provide next-generation medical services, and improving the efficiency of the use of medical resources. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:59:31Z (GMT). No. of bitstreams: 1 ntu-104-D97943037-1.pdf: 39635086 bytes, checksum: 491bb78213e841285181601aaffaffd2 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Introduction
Fundamentals of CMOS MEMS Biomedical SoCs A Hydrogel-Based Implantable Wireless CMOS Glucose Sensor SoC A Remotely Controlled Locomotive IC Driven by Electrolytic Bubbles and Wireless Powering A Smart CMOS Assay SoC for Rapid Blood Screening Test of Risk Prediction Non-Invasive Drosophila ECG Recording by Using Eutectic Gallium-Indium Alloy Electrode: A Feasible Tool for Future Research on the Molecular MechanismsInvolved in Cardiac Arrhythmia Conclusion References Appendix | |
dc.language.iso | en | |
dc.title | CMOS MEMS生醫感測系統單晶片 | zh_TW |
dc.title | Design and Implementation of CMOS MEMS Biomedical SoCs | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 孫台平,何奕倫,楊燿州,邱弘緯,林彥宏 | |
dc.subject.keyword | 生醫,感測,系統單晶片, | zh_TW |
dc.subject.keyword | CMOS,MEMS,Biomedical,SoC, | en |
dc.relation.page | 124 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-20 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 38.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。