Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51906
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung Su)
dc.contributor.authorChi-Min Liuen
dc.contributor.author劉奇旻zh_TW
dc.date.accessioned2021-06-15T13:56:34Z-
dc.date.available2020-08-26
dc.date.copyright2015-08-26
dc.date.issued2015
dc.date.submitted2015-08-25
dc.identifier.citation[1] K. Naessens, H. Ottevaere, R. B H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S407-S429, 2006.
[2] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 46, pp. 1281-1284, 1988.
[3] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Measurement Science and Technology, vol. 1, pp. 759-766, 1990.
[4] T. R. Jay and M. B. Stern, “Preshaping photoresist for refractive microlens fabrication”, Optical Engineering, vol. 33, pp. 3552-3555, 1994.
[5] H. Ottevaere, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, pp. 281-284, 2003.
[6] aets, P. V. Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Applied Optics, vol. 42, pp. 6349-6359, 2003.
[7] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, ” Microjet fabrication of microlens arrays,” IEEE Photonics Technology Letters, vol. 6, pp. 1112-1114, 1994.
[8] M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Optical Engineering, vol. 33, pp. 3547-3551, Nov. 1994.
[9] Kai Wang, et al., 'Design of compact freeform lens for application specific light-emitting diode packaging,'OPTICS EXPRESS, Vol.18, No.2, pp. 413-425,18 January 2010
[10] H. P. Le, “Progress and Trends in Ink-jet Printing Technology” Journal of Imaging Science and Technology, vol. 42, 1998.
[11] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Advanced Materials, vol. 16, pp. 203-213, Feb. 2004.
[12] B. J. Kang, C. K. Lee and J. H. Oh, “All-inkjet-printed electrical components and circuit fabrication on a plastic substrate,” Microelectronic Engineering, vol. 97, pp. 251-254, 2012.
[13] P. Calvert, “Inkjet printing for materials and devices,” Chemistry of Materials, vol. 13, pp. 3299-3305, 2001.
[14] H. Sirringhaus, T. Kawase, and R. H. Friend, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, 2123-2126, 2000.
[15] C. N. Hoth, P. Schilinsky, S. A. Choulis, C. J. Brabec., “Printing highly efficient organic solar cell,” Nano Letters, vol.8, pp. 2806-2813, 2008.
[16] C. Altman, “Microlens array fabrication via microjet printing technologies,” altman.casimirinstitute.net, 2007.
[17] J.-P. Lu, W.-K. Huang, F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” SPIE, vol. 48, pp. 073606, 2009.
[18] Pen-Ko Chou, Cheng-Yi Liu, “Influence of Current Spreading on Internal Quantum Efficiency in GaN-LED,” Department of Chemical & Materials Engineering National Central University Jhong-Li, Taiwan June, 2008
[19] Shih-Yu Hung, Che-Ping Lin, Hsiharng Yang, Ying-Pin Chang, “Optimal design using thermal reflow and caulking for fabrication of gapless microlens array mold inserts,” Optical Engineering, vol. 46, pp.0091-3286, 2007
[20] Mao-Kuo Wei, I-Lin Su, “Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array,” Optics Express, vol. 12, pp. 5777-5782, 2004
[21] A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Optical Engineering, vol. 39, pp. 2171-2176, 2000.
[22] P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics, vol. 6, pp. 617-636, 1997.
[23] F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik, vol. 113, pp. 391-404, 2002.
[24] K. A. Heyries and C. L. Hansen, “Parylene C coating for high-performance replica molding,” Lab Chip, vol. 11, pp. 4122-4125, 2011.
[25] M. Zhang, J. Wu, L. Wang, K. Xiao and W. Wen, “A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips,” Lab Chip, vol. 10, pp. 1199-1203, 2010.
[26] J.-K. Chen, F.-H. Ko, K.-F. Hsieh, C.-T. Chou, and F.-C. Chang, “Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 22, no. 6, pp. 3233-3241, 2004.
[27] H. Peng, Y.-L. Ho, X.-J Yu, M. Wong, and H.-S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array-theory and experiment,” Journal of Display Technology, vol. 1, issue 2, pp. 278-, 2005.
[28] Toan Nguyen. Nhu, “Spin-on glass materials and applications in advanced IC technologies,” ISBN: 90-365-12697, pp. 5-14, (1999)
[29] Mao-Kuo Wei, I-Ling Su, Yi-Jia Chen, Ming Chang, Hong-Yi Lin and Tung-Chuan Wu, “The influence of a microlens array on planar organic light-emitting devices,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 368-374, 2006.
[30] Ken-ichiro Nakamatsu, Makoto Okada, Chiaki Minari, Yoshiyuki Takeuchi, Noriaki Taneichi, Shoji Ohtaka and Shinji Matsui, “Effect of UV Irradiation on Microlens Arrays Fabricated by Room Temperature Nanoimprinting Using Organic Spin-on-Glass,” Applied Physics Express, vol. 1, no. 6, (2008)
[31] Jeong-Keun Ji and Young-Se Kwon, “Conical microlens arrays that flatten optical-irradiance profiles of nonuniform sources,” Applied optics, vol. 34, no. 16, (1994)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51906-
dc.description.abstract本論文中我們提出一個低成本的製程方法將旋塗式玻璃微透鏡製作至紫外光發光二極體上。旋塗式玻璃微透鏡是利用光阻熱處理及多次翻模技術製程,這能有效的降低製程成本。在我們的實驗中,我們製作了不同直徑大小的旋塗式玻璃微透鏡,分別有200, 150, 100及50微米的直徑,並且得到光萃取率提升分別為7.31%, 10.35%, 14.01% 及21.86%。同時,我們也製作了不同形狀的微透鏡,分別有圓形、正方形及六角形,並且得到光萃取率提升分別為7.31%, 9.6%及13.8%。我們利用透鏡圖形的優化,實驗上能有效地將光萃取率提升至21.86%,並且不會破壞任何紫外光發光二極體的電性。zh_TW
dc.description.abstractIn this paper, we present a cost-effective method to fabricate spin on glass microlens array (SOG MLA) on ultra-violet light emitting diodes (UV LEDs). SOG microlens array was formed by thermal reflow technique and multiple replication processes which can reduce the cost of solution process. In our experiments, we fabricated different diameter size SOG microlens arrays whose diameter of each size was about 200, 150, 100 and 50 μm. The light extraction efficiency is improved by 7.31%, 10.35%, 14.01% and 21.86%, respectively. We also fabricated the different shape SOG microlenses, which was circular, square and hexagonal. The light extraction efficiency is improved by 7.31%, 9.6% and 13.8% for circular, square and hexagonal SOG MLA, respectively. By applying optimized lens pattern, an increase of 21.86% in improved light extraction efficiency is achieved experimentally, without detrimental effect to the electrical performance of the UV LEDs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:56:34Z (GMT). No. of bitstreams: 1
ntu-104-R02941095-1.pdf: 5091010 bytes, checksum: 25595e1393206dc16b76bed55130b8d0 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES vi
Chapter 1 Introduction 1
1.1 Review fabrication of technologies of microlens array 1
1.1.1 Reconfigurable microtemplating 4
1.1.2 Thermal reflow of photoresist [2] 5
1.1.3 Laser beam writing [4] 6
1.1.4 Deep lithography with protons (DLP) [5] 6
1.1.5 Laser ablation [6] 8
1.1.6 Microjet printing process 10
1.2 Ultra-violet Light emitting diodes (UV LEDs) 14
1.2.1 Internal Quantum Efficiency of UV-LED 17
1.2.2 Light Extraction Efficiency of UV-LED 18
Chapter 2 Simulation results 20
2.1 Introduction of simulation 20
2.2 Analysis of different size microlens 22
2.3 Analysis of different shape microlens 26
Chapter 3 Working principle and fabrication process 33
3.1 Thermal reflow 33
3.2 Materials 38
3.2.1 AZ P4620 39
3.2.2 Polydimethylsiloxane 40
3.2.3 Spin on glass [28] 41
3.3 Fabrication process 47
3.3.1 Photoresist microlens array 47
3.3.2 Planar PDMS microlens array 47
3.3.3 Surface treatment 50
3.3.4 SOG microlens array 52
Chapter 4 Experiment results 53
4.1 Characteristic of Spin on glass 53
4.2 Different size SOG microlens 58
4.3 Different shape SOG microlens 60
Chapter 5 Conclusions 72
REFERENCE 73
dc.language.isoen
dc.subject多次翻模製程zh_TW
dc.subject微透鏡zh_TW
dc.subject旋塗式玻璃zh_TW
dc.subject紫外光發光二極體zh_TW
dc.subject光萃取率zh_TW
dc.subjectmicrolens arrayen
dc.subjectspin on glassen
dc.subjectreplication processen
dc.subjectlight extraction efficiencyen
dc.subjectultra-violet light emitting diodeen
dc.title旋塗式玻璃微透鏡應用在紫外光發光二極體取光效率提升zh_TW
dc.titleExtraction efficiency enhancement in ultra-violet LEDs based on spin on glass microlensesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡永傑,黃鼎偉
dc.subject.keyword微透鏡,旋塗式玻璃,紫外光發光二極體,光萃取率,多次翻模製程,zh_TW
dc.subject.keywordspin on glass,microlens array,ultra-violet light emitting diode,light extraction efficiency,replication process,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2015-08-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved