Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹瀅潔(Ying-Chieh Chan)
dc.contributor.authorPo-Yuan Chenen
dc.contributor.author陳柏元zh_TW
dc.date.accessioned2021-06-15T13:50:57Z-
dc.date.available2022-08-08
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-08
dc.identifier.citation1. Mishra, A.K. and M. Ramgopal, An adaptive thermal comfort model for the tropical climatic regions of India (Köppen climate type A). Building and Environment, 2015. 85: p. 134-143.
2. Wang, Z., et al., Individual difference in thermal comfort: A literature review. Building and Environment, 2018. 138: p. 181-193.
3. Bluyssen, P., M. Aries, and P. Van Dommelen, Comfort of workers in office buildings: The European HOPE project. Building and Environment, 2011. 46: p. 280-288.
4. Gärtner, J.A., F. Massa Gray, and T. Auer, Assessment of the impact of HVAC system configuration and control zoning on thermal comfort and energy efficiency in flexible office spaces. Energy and Buildings, 2020. 212: p. 109785.
5. Che, W.W., et al., Energy consumption, indoor thermal comfort and air quality in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy and Buildings, 2019. 201: p. 202-215.
6. Wu, J., et al., A PMV-based HVAC control strategy for office rooms subjected to solar radiation. Building and Environment, 2020. 177: p. 106863.
7. Li, W., J. Zhang, and T. Zhao, Indoor thermal environment optimal control for thermal comfort and energy saving based on online monitoring of thermal sensation. Energy and Buildings, 2019. 197: p. 57-67.
8. Fletcher, C., et al., CFD as a building services engineering tool.
9. Song, J. and X. Meng, The Improvement of Ventilation Design in School Buildings Using CFD Simulation. Procedia Engineering, 2015. 121: p. 1475-1481.
10. Campano, M.A., J.J. Sendra, and S. Domínguez, Analysis of Thermal Emissions from Radiators in Classrooms in Mediterranean Climates. Procedia Engineering, 2011. 21: p. 106-113.
11. Lam, J.C. and A.L.S. Chan, CFD analysis and energy simulation of a gymnasium. Building and Environment, 2001. 36(3): p. 351-358.
12. Aryal, P. and T. Leephakpreeda, CFD Analysis on Thermal Comfort and Energy Consumption Effected by Partitions in Air-Conditioned Building. Energy Procedia, 2015. 79: p. 183-188.
13. Chiang, W.-H., C.-Y. Wang, and J.-S. Huang, Evaluation of cooling ceiling and mechanical ventilation systems on thermal comfort using CFD study in an office for subtropical region. Building and Environment, 2012. 48: p. 113-127.
14. Gijón-Rivera, M., et al., Coupling CFD-BES Simulation of a glazed office with different types of windows in Mexico City. Building and Environment, 2013. 68: p. 22-34.
15. Zhang, T., et al., Removal of formaldehyde in urban office building by the integration of ventilation and photocatalyst-coated window. Sustainable Cities and Society, 2020. 55: p. 102050.
16. Li, Q., et al., CFD study of the thermal environment in an air-conditioned train station building. Building and Environment, 2009. 44(7): p. 1452-1465.
17. Catalina, T., J. Virgone, and F. Kuznik, Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling. Building and Environment, 2009. 44(8): p. 1740-1750.
18. ASHRAE, Thermal Environmental Conditions for Human Occupancy, in ANSI/ASHRAE Standard 55-2010. 2010, American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, Georgia. p. 3.
19. Fanger, P.O., Thermal Comfort: Analysis and Applications in Environmental Engineering. 1970: Danish Technical Press.
20. Aghniaey, S., et al., Thermal comfort evaluation in campus classrooms during room temperature adjustment corresponding to demand response. Building and Environment, 2019. 148: p. 488-497.
21. Mors, S.t., et al., Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, 2011. 46(12): p. 2454-2461.
22. Cheung, T., et al., Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2019. 153: p. 205-217.
23. Gilani, S., M. Hammad Khan, and W. Pao, Thermal Comfort Analysis of PMV Model Prediction in Air Conditioned and Naturally Ventilated Buildings. Energy Procedia, 2015. 75: p. 1373-1379.
24. Kwok, A.G. and C. Chun, Thermal comfort in Japanese schools. Solar Energy, 2003. 74(3): p. 245-252.
25. Nicol, J.F. and M.A. Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 2002. 34(6): p. 563-572.
26. Yang, D., J. Xiong, and W. Liu, Adjustments of the adaptive thermal comfort model based on the running mean outdoor temperature for Chinese people: A case study in Changsha China. Building and Environment, 2017. 114: p. 357-365.
27. Fang, Z., et al., Field study on adaptive thermal comfort in typical air conditioned classrooms. Building and Environment, 2018. 133: p. 73-82.
28. Barbadilla-Martín, E., et al., Field study on adaptive thermal comfort in mixed mode office buildings in southwestern area of Spain. Building and Environment, 2017. 123: p. 163-175.
29. CEN, Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings: Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics EN 15251, European Committee for Standardization, Brussels,, 2007.
30. Nguyen, A.T., M.K. Singh, and S. Reiter, An adaptive thermal comfort model for hot humid South-East Asia. Building and Environment, 2012. 56: p. 291-300.
31. Nicol, F., Adaptive thermal comfort standards in the hot–humid tropics. Energy and Buildings, 2004. 36(7): p. 628-637.
32. Hwang, R.-L., T.-P. Lin, and N.-J. Kuo, Field experiments on thermal comfort in campus classrooms in Taiwan. Energy and Buildings, 2006. 38(1): p. 53-62.
33. de Dear, R.J., K.G. Leow, and S.C. Foo, Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore. International Journal of Biometeorology, 1991. 34(4): p. 259-265.
34. Kwok, A.G. Thermal comfort in tropical classrooms. in ASHRAE Transactions. 1998.
35. Damiati, S.A., et al., Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Building and Environment, 2016. 109: p. 208-223.
36. Li, J., et al., Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network. Building and Environment, 2018. 127: p. 138-147.
37. Aftab, M., et al., Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy and Buildings, 2017. 154: p. 141-156.
38. Tang, S., et al., Development of a prototype smart home intelligent lighting control architecture using sensors onboard a mobile computing system. Energy and Buildings, 2017. 138: p. 368-376.
39. Kim, T., et al., Study on indoor thermal environment of office space controlled by cooling panel system using field measurement and the numerical simulation. Building and Environment, 2005. 40(3): p. 301-310.
40. Gan, G., Numerical investigation of local thermal discomfort in offices with displacement ventilation. Energy and Buildings, 1995. 23(2): p. 73-81.
41. Gebremedhin, K.G. and B.X. Wu, Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment. Journal of Thermal Biology, 2003. 28(4): p. 301-319.
42. Stamou, A. and I. Katsiris, Verification of a CFD model for indoor airflow and heat transfer. Building and Environment, 2006. 41(9): p. 1171-1181.
43. ASHRAE, Thermal environmental conditions for human occupancy, in ASHRAE standard 55-2013. 2013, ASHRAE: Atlanta, GA. p. 52 pages.
44. Degree Controls, I. F200. Available from: https://degreec.com/pages/f200.
45. Walikewitz, N., et al., The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Building and Environment, 2015. 84: p. 151-161.
46. Lau, S.S.Y., J. Zhang, and Y. Tao, A comparative study of thermal comfort in learning spaces using three different ventilation strategies on a tropical university campus. Building and Environment, 2019. 148: p. 579-599.
47. ASHRAE, Thermal Environmental Conditions for Human Occupancy, in ASHRAE 55-2017. 2017, American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, Georgia.
48. Kim, E.-B. and J.-K. Park, Proposal for a heat balance model tailored to the Korean peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2014. 50: p. 657-667.
49. Humphreys, M.A. and J. Fergus Nicol, The validity of ISO-PMV for predicting comfort votes in every-day thermal environments. Energy and Buildings, 2002. 34(6): p. 667-684.
50. Griffiths, I., Thermal comfort in buildings with passive solar features: field studies. 1991: Commission of the European Communities.
51. Humphreys, M.A., H.B. Rijal, and J.F. Nicol, Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Building and Environment, 2013. 63: p. 40-55.
52. Arens, E., Assessment of Indoor Environments, in Proceedings of Roomvent. 2007.
53. Karjalainen, S., Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Building and Environment, 2007. 42(4): p. 1594-1603.
54. Maykot, J.K., R.F. Rupp, and E. Ghisi, A field study about gender and thermal comfort temperatures in office buildings. Energy and Buildings, 2018. 178: p. 254-264.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51809-
dc.description.abstract室內環境的熱舒適度對人們的健康、生產力和心理有著重大影響,而空調系統是影響室內熱舒適度的重要因子。因此為建立良好的熱環境,空調系統與熱舒適度之間的影響逐漸成為一個獨立的研究領域。本研究的目的是在不改變原有室內建築的設計和HVAC系統的情況下,提升人們在室內空間的熱舒適度。本研究架設了一個網站,其中結合CFD模擬與熱舒適度的預測來讓人們迅速且方便的在室內空間找到適合他們熱偏好的位置。PMV模型被使用在熱舒適度的預測上,然而此模型在過往許多研究被指出準確率不高或是會高估熱感受程度。因此,本研究使用便攜式測量系統和雲端數據庫收集了在教室和辦公室中居住者的熱舒適度問卷並發展出適合炎熱和潮濕氣候的自適應熱舒適度模型。問卷的收集包含兩種不同的通風模式:空調模式與自然通風模式。根據問卷數據的顯示,PMV模型在空調模式下比在自然通風模式下更準確。另外,透過與ASHRAE熱舒適數據庫中的數據和本研究結果的比較,結果顯示不同PMV下三種熱偏好的機率分佈差異很大,而地理位置的不同可能是造成此差異的原因。本研究為調整自適應熱舒適模型提供了一種可靠的方法,而未來的研究能將本研究提出的自適應熱舒適模型與CFD模擬結合,讓預測出來的熱舒適度能更準確。zh_TW
dc.description.abstractThe thermal comfort of the indoor environment has a significant impact on people's productivity and psychology, and the HVAC system is an important factor that affects the indoor thermal comfort. Therefore, to establish a good thermal environment, the influence between the HVAC system and thermal comfort has gradually become an important research field. The purpose of this study is to improve the thermal comfort of people in an indoor environment without changing the original indoor building design and HVAC system structure. We set up a website that combines CFD simulation and thermal comfort prediction to allow people to quickly and conveniently find a location that suits their thermal preferences in the indoor area.
The PMV model is used to predict thermal comfort. However, many previous studies found out that the PMV model had a low prediction accuracy. Therefore, this study develops a portable measurement system and conducts a field study in several offices and classrooms at National Taiwan University. The thermal comfort of occupants in the classrooms and offices is investigated under two different ventilation strategies: air-conditioning (AC) and natural ventilation (NV). Based on survey data, we find that the PMV model is more reliable in AC mode than in NV mode, and an adaptive thermal comfort model is subsequently developed. This study provides a reliable method for adjusting the adaptive thermal comfort model, and future research can combine the adaptive thermal comfort model proposed in this study with CFD simulation to make the predicted thermal comfort more accurate.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:50:57Z (GMT). No. of bitstreams: 1
U0001-0808202021342600.pdf: 2039477 bytes, checksum: 6dd184dedde1f0ed53f1eb204982e394 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Chapter 1: Introduction 1
1.1 Research Motivation 1
1.2 Research Objectives 3
Chapter 2: Literature Review 4
2.1 HVAC System 4
2.2 Thermal Comfort 7
Chapter 3: Methodology 11
3.1 CFD Simulation 11
3.1.1 CFD Simulation Process 11
3.1.2 CFD Simulation Software 12
3.1.3 Assumptions of CFD simulation 14
3.1.4 Geometry Modeling 14
3.1.5 Model Meshing 16
3.1.6 Environmental Condition Assumptions 16
3.1.7 Simulation Parameter Settings 18
3.2 Website Architecture 21
3.3 Thermal Comfort Survey 22
3.3.1 Portable Data Collecting System 22
3.3.2 Questionnaire 24
3.3.3 System Operation Process 26
Chapter 4: Results 28
4.1 CFD Simulation Results 28
4.2 Website System 30
4.2.1 Website Back End 30
4.2.2 Website Front End 32
4.2.3 Feedback Website 34
4.3 Thermal Comfort Survey’s Results 35
4.3.1 Indoor environmental conditions during the survey 35
4.3.2 PMV and TSV 37
4.3.3 PPD and APD 37
4.3.4 Comfort temperature 38
4.3.5 Other factors 39
4.3.6 Individual differences 41
4.3.7 Thermal Preference Model 42
4.4 Discussions 43
Chapter 5: Conclusions and Recommendations 45
5.1 Conclusions 45
5.2 Recommendations 47
Reference 48
dc.language.isoen
dc.subject自適應模型zh_TW
dc.subjectCFD模擬zh_TW
dc.subject熱舒適度預測zh_TW
dc.subject便攜式測量系統zh_TW
dc.subject熱溼氣候zh_TW
dc.subjectHot-humid climateen
dc.subjectPortable measurement systemen
dc.subjectAdaptive thermal comforten
dc.subjectThermal comforten
dc.subjectCFD simulationen
dc.title結合風場與熱舒適度分析提供人員於室內空間的座位選擇
zh_TW
dc.titleCombining CFD and Thermal Comfort Analysis to Provide Occupants Guidance of Seat Selections in the Indoor Space
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳柏翰(Po-Han Chen),陳柏華(Po-Hua Chen),吳翌禎(I-Chen Wu)
dc.subject.keywordCFD模擬,熱舒適度預測,便攜式測量系統,熱溼氣候,自適應模型,zh_TW
dc.subject.keywordCFD simulation,Thermal comfort,Adaptive thermal comfort,Portable measurement system,Hot-humid climate,en
dc.relation.page50
dc.identifier.doi10.6342/NTU202002690
dc.rights.note有償授權
dc.date.accepted2020-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0808202021342600.pdf
  未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved