請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51571
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林君榮 | |
dc.contributor.author | Hui-Ting Yang | en |
dc.contributor.author | 楊惠婷 | zh_TW |
dc.date.accessioned | 2021-06-15T13:39:23Z | - |
dc.date.available | 2021-02-26 | |
dc.date.copyright | 2016-02-26 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2016-01-19 | |
dc.identifier.citation | Achenbach TV, Brunner B, Heermeier K. Oligonucleotide-based knockdown technologies: antisense versus RNA interference. Chembiochem. 2003; 4(10):928-935.
André P, Saubaméa B, Cochois-Guégan V, Marie-Claire C, Cattelotte J, Smirnova M, Schinkel AH, Scherrmann JM, Cisternino S. Transport of biogenic amine neurotransmitters at the mouse blood–retina and blood–brain barriers by uptake1 and uptake2. J Cereb Blood Flow Metab. 2012; 32(11):1989-2001. Boison D. Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005; 11(1):25-36. Blum D, Gall D, Galas MC, d'Alcantara P, Bantubungi K, Schiffmann SN. The adenosine A1 receptor agonist adenosine amine congener exerts a neuroprotective effect against the development of striatal lesions and motor impairments in the 3-nitropropionic acid model of neurotoxicity. J Neurosci. 2002; 22(20):9122-9133. Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN. Adenosine receptors and Huntington's disease: implications for pathogenesis and therapeutics. Lancet Neurol. 2003; 2(6):366-374. Blum D, Galas MC, Pintor A, Brouillet E, Ledent C, Muller CE, Bantubungi K, Galluzzo M, Gall D, Cuvelier L, Rolland AS, Popoli P, Schiffmann SN. A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions: implications for the neuroprotective potential of A2A antagonists. J Neurosci. 2003; 23(12):5361-5369. Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol Ther. 2011; 19(12):2178-2185. Chikahisa S and Séi H. The role of ATP in sleep regulation. Front Neurol. 2011; 2(87):1-5. Dunwiddie TV1, Masino SA., The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001; 24(1):31-55. Davies B, Morris T., Physiological parameters in laboratory animals and humans. Pharm. 1993; Res 10(7):1093–1095. Denovan-Wright EM, Devarajan S, Dursun SM, Robertson HA. Maintained improvement with minocycline of a patient with advanced Huntington's disease. J Psychopharmacol. 2002; 16(4):393-394. Eckle T, Hughes K, Ehrentraut H, Brodsky KS, Rosenberger P, Choi DS, Ravid K, Weng T, Xia Y, Blackburn MR, Eltzschig HK. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB J. 2013; 27(8):3078–3089. Filipenko ML, Beilina AG, Alekseyenko OV, Dolgov VV, Kudryavtseva NN. Filipenko et al. Repeated experience of social defeats increases serotonin transporter and monoamine oxidase A mRNA levels in raphe nuclei of male mice. Neurosci Lett. 2002; 321(1-2):25-28. Hinderling PH., Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol Rev. 1997; 49(3):279-295. Huang NK, Lin JH, Lin JT, Lin CI, Liu EM, Lin CJ, Chen WP, Shen YC, Chen HM, Chen JB, Lai HL, Yang CW, Chiang MC, Wu YS, Chang C, Chen JF, Fang JM, Lin YL, Chern Y., A new drug design targeting the adenosinergic system for Huntington's disease. PLoS One. 2011; 6(6):e20934. Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC., Huntington’s disease: from pathology and genetics to potential therapies. Biochem J. 2008; 412(2):191-209. Jarvis SM and Young JD., Nucleoside transport in human and sheep erythrocytes. Evidence that nitrobenzylthioinosine binds specifically to functional nucleoside-transport sites. Biochem J. 1980; 190(2):377–383. Jarvis SM, Hammond JR, Paterson AR, and Clanachan AS., Species differences in nucleoside transport: A study of uridine transport and nitrobenzylthioinosine binding by mammalian erythrocytes. Biochem J. 1982; 208(1):83–88. Krobitsch S, Kazantsev AG. Huntington's disease: From molecular basis to therapeutic advances. Int J Biochem Cell Biol. 2011; 43(1):20-24. Kao YH, Chern Y, Yang HT, Chen HM, Lin CJ., Regulation of P-glycoprotein expression in brain capillaries in Huntington’s disease and its impact on brain availability of antipsychotic agents risperidone and paliperidone. JCBMF. 2015; 0(00) 1–12. Published online before print. Kowaluk EA, Bhagwat SS, Jarvis MF. Adenosine kinase inhibitors. Curr Pharm Des. 1998; 4(5):403-416. Lips KS, Lührmann A, Tschernig T, Stoeger T, Alessandrini F, Grau V, Haberberger RV, Koepsell H, Pabst R, Kummer W. Knockout of mouse Cyp3a gene enhances synthesis of cholesterol and bile acid in the liver. J Lipid Res. 2013; 54(8):2060-2068 Lips KS, Lührmann A, Tschernig T, Stoeger T, Alessandrini F, Grau V, Haberberger RV, Koepsell H, Pabst R, Kummer W. Down-regulation of the non-neuronal acetylcholine synthesis and release machinery in acute allergic airway inflammation of rat and mouse. Life Sci. 2007; 80(24-25):2263-2269. Lopes LV, Sebastião AM, Ribeiro JA., Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem. 2011; 11(8):1087-1101. Matsushima S, Maeda K, Hayashi H, Debori Y, Schinkel AH, Schuetz JD, Kusuhara H, Sugiyama Y. Involvement of multiple efflux transporters in hepatic disposition of fexofenadine. Mol Pharmacol. 2008; 73(5):1474-1483. Nakamichi N, Shima H, Asano S, Ishimoto T, Sugiura T, Matsubara K, Kusuhara H, Sugiyama Y, Sai Y, Miyamoto K, Tsuji A, Kato Y. Involvement of Carnitine/Organic Cation Transporter OCTN1/SLC22A4 in Gastrointestinal Absorption of Metformin. J Pharm Sci. 2013; 102(9):3407-3417 Park J and Gupta RS. Adenosine Metabolism, Adenosine Kinase,and Evolution. Adenosine: A Key Link between Metabolism and Brain Activity. 2013, ISBN 978-1-4614-3902-8. Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE, Young JD., Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem. 2011; 11(8):948-972. Paxinos G, Franklin KBJ., The Mouse Brain in Stereotaxic Coordinates. Gulf Professional Publishing 2004, ISBN 978-0-12-391057-8. Ross CA, Tabrizi SJ., Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011; 10(1):83-98. Redzic ZB, Biringer J, Barnes K, Baldwin SA, Al-Sarraf H, Nicola PA, Young JD, Cass CE, Barrand MA, Hladky SB., Polarized distribution of nucleoside transporters in rat brain endothelial and choroid plexus epithelial cells. J Neurochem. 2005; 94(5):1420-1426. Sinclair CJ, Powell AE, Xiong W, LaRivière CG, Baldwin SA, Cass CE, Young JD, Parkinson FE. Nucleoside transporter subtype expression: effects on potency of adenosine kinase inhibitors. Br J Pharmacol. 2001; 134(5):1037-1044. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, Lobsiger CS, Ward CM, McAlonis-Downes M, Wei H, Wancewicz EV, Bennett CF, Cleveland DW. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006; 116(8):2290-2296. Shioda N, Beppu H, Fukuda T, Li E, Kitajima I, Fukunaga K. Aberrant calcium/calmodulin-dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J Neurosci. 2011; 31(1):346-358. The Huntington's Disease Collaborative Research Group, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993; 72(6):971-983. Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, Inui K. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in mice reduces renal secretion of metformin. Mol Pharmacol. 2009; 75(6):1280-1286. Yu S, Li S, Yang H, Lee F, Wu JT, Qian MG., A novel liquid chromatography/tandem mass spectrometry based depletion method for measuring red blood cell partitioning of pharmaceutical compounds in drug discovery. Rapid Commun Mass Spectrom. 2005; 19(2):250-254. Yacovino LL, Gibson CJ, Aleksunes LM. Down-regulation of brush border efflux transporter expression in the kidneys of pregnant mice. Drug Metab Dispos. 2013; 41(2):320-325. Zimmerman MA, Tak E, Ehrentraut SF, Kaplan M, Giebler A, Weng T, Choi DS, Blackburn MR, Kam I, Eltzschig HK, Grenz A., Equilibrative nucleoside transporter (ENT)-1-dependent elevation of extracellular adenosine protects the liver during ischemia and reperfusion. Hepatology. 2013; 58(5):1766-1778. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51571 | - |
dc.description.abstract | 亨丁頓舞蹈症 (Huntington’s disease; HD) 為遺傳性的神經退化疾病 (neurodegenerative disease),隨著病程的演進,病人伴隨有舞蹈症 (Chorea)、精神失常 (psychiatric manifestations)、認知障礙 (cognitive loss) 等症狀。本研究的目的在探討 ENT1對於腺苷 (adenosine) 的結構類似物 (化合物-A及化合物-B) 藥動學性質之影響。我們首先測量 mENT1 mRNA在R6/2 HD小鼠以及其wild-type (WT) 控制組各組織的表現量;接著利用mENT1 WT 及knock out (KO) 小鼠模型,觀察化合物在血液中的分布情形、靜脈給予小鼠化合物,評估化合物血中濃度時間曲線圖,同時萃取小鼠腦部瞭解化合物通過血腦屏障 (blood-brain barrier,BBB) 的通透情形以及腦部adenosine的濃度變化。
實驗結果顯示在R6/2 WT及HD小鼠組織中,mEnt1基因表現量不會受到疾病的影響。於血液中的分布情形而言,化合物-A的KB/P近似於1,化合物-B的KB/P > 1,這表示化合物-B會分布到紅血球中;尾靜脈注射化合物-A後,在mENT1 WT與KO小鼠血液中,化合物-A的AUC分別為19989±1904、28207±4252 ng×min/mL;注射化合物-B後,在mENT1 WT與KO小鼠血液中,化合物-B的AUC分別為25738±5946、47230±15223 ng×min/mL;化合物血液中至腦部組織的比例,化合物-A在WT與KO小鼠沒有顯著的差異,化合物-B在WT小鼠明顯高於KO小鼠,且化合物-B血液中至腦部組織的比例較化合物-A高。然而在腦部微透析實驗中則發現,腹腔注射化合物-A之後,化合物本身及 adenosine 在紋狀體內有上升的趨勢;腹腔注射化合物-B之後,紋狀體內化合物本身及腺苷 (adenosine) 並無變化的跡象。由以上實驗結果可以知道mENT1對於compound-B的藥動性質影響較大。化合物-A能增加腦中adenosine濃度,化合物-B卻不能,這個現象的意義需要將來進一步研究去釐清。 | zh_TW |
dc.description.abstract | Huntington’s disease (HD) is a progressive neurodegenerative disease characterized by chorea and the decline in psychiatric and cognitive functions. The objective of the present study was to investigate the role of ENT1 on the pharmacokinetics of adenosine analogues (compound-B and compound-A). mRNA levels of mouse ENT1 (mEnt1) were analyzed in R6/2 HD transgenic mice and the wild-type (WT) controls. Also, pharmacokinetic properties, including blood to plasma ratios (KB/P), blood concentration versus time curves, brain to blood ratios, and ability of compounds to pass through the blood brain barrier (BBB), of these compounds were evaluated in mENT1 knock out (KO) mice and the wild-type (WT) controls.
The results showed that the expression levels of mEnt1 were comparable between R6/2 WT and HD mice. The KB/P of compound-A is approximate to 1 and compound-B is greater than 1, suggesting that compound-B is distributed into red blood cells. For compound-B, the AUC values were 25738±5946、47230±15223 ng×min/mL in mENT1 WT and KO mice, respectively. For compound-A, the AUC values were 19989±1904、28207±4252 ng×min/mL in mENT1 WT and KO mice, respectively. From the data of brain and blood extraction, the brain to blood ratios of compound-A was no difference in WT and KO mince, compound-B was higher in WT mice than in KO mice, whereas this ratio was higher for compound-B than for compound-A. On the other hand, the results of in-vivo brain microdialysis study showed that the brain extracellular levels of compound-A and adenosine tended to increase after an intraperitoneal injection of 10 mg/kg of compound-A, whereas the concentration of compound-B and adenosine remained unchanged after the administration (i.p. 10 mg/kg of compound-B). These data suggest that the expression of mENT1 may have more profound effects on the pharmacokinetics of compound-B than on that of compound-A. However, since it is compound-A but not compound-B that increased brain extracellular levels of adenosine, further study is required to eludicate the pharmacodynamic impact of these findings. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:39:23Z (GMT). No. of bitstreams: 1 ntu-104-R02423009-1.pdf: 9024356 bytes, checksum: 4676781b2cc7b4baf96274c285c05405 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Abstract i
摘要 iii 目錄 iv 圖目錄 viii 表目錄 ix 第一章 文獻回顧 1 1.1 亨丁頓舞蹈症 1 1.2 HTT功能及mHTT造成紋狀體中神經細胞死亡之機轉 1 1.3 亨丁頓舞蹈症之治療現況 3 1.4 腦部的核苷、核苷酸與腺苷受體 4 1.5 核苷轉運蛋白 5 1.6 神經細胞內、外腺苷合成途徑、核苷轉運蛋白調控………5 1.7 mENT1 knockout mice model 6 第二章 研究目的 11 第三章 實驗材料 12 3.1 實驗動物 12 3.2 R6/2小鼠組織萃取及反轉錄及定量聚合酶連鎖反應 12 3.3 化合物血液中分布試驗 13 3.4 化合物尾靜脈注射血中濃度時間曲線圖 14 3.5 尾靜脈注射腦部化合物含量實驗 14 3.5.1 mENT1 WT、KO小鼠腦部化合物含量實驗 14 3.5.2 ICR小鼠心臟灌流,腦部化合物含量實驗 15 3.5.3 ICR小鼠腦部化合物含量與時間關係實驗……………..16 3.6 mENT1 WT、KO小鼠腦部腺苷含量 17 3.7 腦部微透析試驗 18 3.8 超高效液相層析串聯質譜儀定量分析 20 3.9 核苷衍生物 20 第四章 實驗方法 22 4.1 R6/2小鼠組織萃取反轉錄及定量聚合酶連鎖反應 22 4.1.1 RNA抽取 22 4.1.2 RNA品質控制 22 4.1.3 反轉錄反應 22 4.1.4 定量聚合酶連鎖反應 23 4.2 化合物血液中分布試驗實驗方法 24 4.2.1 小鼠血液採集 26 4.2.2 血液分布試驗 26 4.2.3 血液萃取方法 26 4.3 化合物尾靜脈注射血中濃度時間曲線圖 27 4.3.1 給藥及採血步驟 27 4.3.2 血樣萃取方法 27 4.4 尾靜脈注射腦部化合物含量實驗 28 4.4.1 給藥、採血及取腦步驟 28 4.4.2 心臟灌流,去除腦部血液實驗步驟 29 4.4.3 血樣萃取方法 29 4.4.4 腦部樣品萃取方法 29 4.5 mENT1 WT、KO小鼠腦部腺苷含量 30 4.5.1. 取腦步驟 30 4.5.2. 腦部樣品萃取方法 30 4.6 mENT1 WT及KO小鼠腦部微透析試驗 31 4.6.1 透析膜清洗 31 4.6.2 體外回收率試驗 31 4.6.3 腦部定位及微透析探針外管置入 32 4.6.4 腦部微透析流程 32 4.7 超高效能液相層析儀定量分析 33 4.7.1 mENT1 WT、KO小鼠腦部腺苷含量分析 33 4.7.2 微透析探針回收率檢品濃度測定 33 4.8 超高效能液相層析串聯質譜儀定量分析 34 4.8.1 血樣濃度測定 34 4.8.2 腦部檢品含量測定 34 4.8.3 腦部微透析檢品濃度測定 35 4.9 尾靜脈給藥之藥物動力學分析計算 35 4.9.1 WinNonlin之設定及藥物動力學參數之計算……....35 4.10 統計分析 38 第五章 實驗結果 40 5.1 R6/2 WT及HD小鼠各組織轉運蛋白表現量比較 40 5.2 化合物血液中分布試驗 40 5.3 化合物尾靜脈注射血中濃度時間曲線圖 41 5.4 尾靜脈注射腦部化合物含量實驗結果 41 5.5 mENT1 WT、KO小鼠腦部腺苷含量試驗結果 42 5.6 mENT1 WT及KO小鼠腦部微透析試驗結果 42 第六章 結果討論 57 6.1 R6/2 WT及HD小鼠組織轉運蛋白表現量比較探討……...57 6.2 化合物在血液中分布情形 58 6.3 化合物在mENT1 WT及KO血液中濃度以及腦部分布性質探討….…………………………………………………….59 6.4 mENT1 WT、KO小鼠腺苷含量、腦部微透析討論 59 第七章 結論 62 第八章 參考文獻 63 第九章 附錄 68 圖目錄 圖1-1 神經細胞中HTT以及mHTT的功能假想圖 7 圖1-2 腺苷結構圖 8 圖1-3 ENTs與CNTs對人類nucleoside及nucleobases選擇性 8 圖1-4 腦部細胞內、外腺苷代謝途徑假想圖 9 圖1-5 mEnt1-4、mCnt1-3在mENT1 WT、KO小鼠全腦中的基因表現量………………………………………………………………..…10 圖4-1 血液分布試驗實驗示意圖…………………………..………39 圖5-1 R6/2 WT、HD小鼠各組織中轉運蛋白mRNA表現量 43 圖5-2 mENT1 WT以及KO小鼠血液中之化合物血液-血漿分布比例圖 44 圖5-3 mENT1 WT、KO小鼠血液中化合物濃度時間曲線圖 45 圖5-4 mENT1 WT、KO小鼠血液、腦部化合物濃度、含量圖,及化合物自血液至腦部的比例關係圖 46 圖5-5 ICR小鼠尾靜脈注射,有無心臟灌流,腦部化合物圖 47 圖5-6 ICR小鼠血液、腦部化合物濃度、含量圖,及化合物自血液至腦部的比例關係圖 48 圖5-7 mENT1 WT、KO小鼠腦部腺苷含量圖 49 圖5-8 mENT1 WT、KO小鼠腦部微透析化合物及腺苷濃度時間關係圖 50 表目錄 表1-1 腦中的腺苷受體 10 表3-1 核酸引子序列 21 表5-1 各轉運蛋白在R6/2 WT、HD小鼠cortex、liver、kidney以及jejunum中mRNA表現量 51 表5-2 化合物在血液中的分布情形實驗數據………………………52 表5-3 compound-A在mENT1 WT、KO小鼠之藥物動力學參數….53 表5-4 compound-B在mENT1 WT、KO小鼠之藥物動力學參數 54 表5-5 化合物在mENT1 WT、KO小鼠血液及腦部化合物含量實驗結果 55 表5-6 化合物在 ICR小鼠有、無灌流腦部組織中含量結果…......55 表5-7 化合物在ICR小鼠血液及腦部化合物含量實驗結果 56 表5-8 腦部微透析之細胞外液中化合物、腺苷濃度與時間圖之曲線下面積 56 | |
dc.language.iso | zh-TW | |
dc.title | 探討核苷轉運蛋白ENT1在治療亨丁頓舞蹈症的腺苷衍生物之藥物動力學性質中所扮演的角色 | zh_TW |
dc.title | The role of ENT1 in pharmacokinetics of nucleoside analogues for the treatment of Huntington's disease. | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林雲蓮,陳儀莊,陳志成 | |
dc.subject.keyword | 亨丁頓舞蹈症,ENT1,藥物動力學性質,化合物-A,化合物-B,腺?, | zh_TW |
dc.subject.keyword | ENT1,pharmacokinetics,compound-A,compound-B,adenosine, | en |
dc.relation.page | 75 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-01-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 8.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。