Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5139
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周逸儒(Yi-Ju Chou)
dc.contributor.authorShan-He Yangen
dc.contributor.author楊善合zh_TW
dc.date.accessioned2021-05-15T17:52:27Z-
dc.date.available2019-08-16
dc.date.available2021-05-15T17:52:27Z-
dc.date.copyright2014-08-16
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citationBlevins, R. D (1990), Flow Induced Vibration, 2nd Edn., Van Nostrand Reinhold Co
Chou, Y., and O. B. Fringer (2010), “Consistent discretization for simulations of flows with moving generalized curvilinear coordinates”, Int. J. Numer. Methods Fluids, 62, 802–826
Chou, Y., and O. B. Fringer (2010), “A model for the simulation of coupled flow-bedform evolution in turbulent flows”, J Geophys Res:115
Dargahi, B. (1989), “The turbulent flow around a circular cylinder”, Exps. Fluids 8, 1–12.
Dargahi, B. (1990), ”Controlling Mechanism of Local Scouring”, J. Hydraul. Eng. 1990.116:1197-1214.
E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof (2000), “Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations”, Journal of Computational Physics, 161(1):35-60
D. Goldstein, R. Handler, and L. Sirovich (1993), “Modeling a No-Slip Flow Boundary with an External Force Field”, Journal of Computational Physics, 105(2):354-366
Hunt, J. C. R., Wray, A. A. & Moin, P. (1988), Eddies, “stream, and convergence zones in turbulent flows”, Center for Turbulence Research Rep. CTR-S88.
Melville, B. W. & Raudkivi, A. J. (1977), “Flow characteristics in local scour at bridge piers”, J. Hydraul. Res. 15, 373–380.
Melville, B. W., and Chiew, Y. M. (1999), “Time scale for local scour at bridge piers.” , J. Hydraul. Eng., 10.1061/(ASCE)0733-9429(1999) 125:1(59), 59–65.
Olsen, N. R. B. & Melaaen, M. C. (1993), “Three-dimensional calculation of scour around cylinders”, J. Hydraulic Engng ASCE 119, 1048–1054.
Olsen, N. R. B. & Kjellesvig, H. M. (1998), ” Three-dimensional numerical flow modelling for estimation of maximum local scour”, J. Hydraul. Res. 36, 579–590.
Paik, Escauriaza & Sotiropoulos (2007), “On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body Junction”, Physics of Fluids 19, 045107
C.S. Peskin (1977), “Numerical analysis of blood flow in the heart”, J. Comput. Phys. 25 220–252.
Richardson, J. E. & Panchang, V. G. (1998), “Three-dimensional simulation of scour-inducing flow at bridge piers”, J. Hydraul. Engng ASCE 124, 530–540.
Roulund, Sumer, Fredsoe & Michelsen (2005), ” Numerical and experimental investigation of flow and scour around a circular pile”, J. Fluid Mech. , vol. 534, pp.351–401.
E.M. Saiki and S. Biringen (1996), “Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method”, Journal of Computational Physics, 123(2):450-465
Shields AF (1936), “Application of similarity principles and turbulence research to bed-load movement”, vol 26. Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau,Berlin, Germany, pp 5–24
Soulsby, R. (1997), “Dynamics of Marine Sands: A Manual for Practical Applications, Telford, London.
Tseng, M.-H., Yen, C.-L. & Song, C. C. S. (2000), “Computation of three-dimensional flow around square and circular piers”, Intl J. Numer. Methods Fluids 34, 207–227.
Van Rijn, L. C. (1993), Principles of Sediment Transport in Rivers, Estuaries,and Coastal Seas, Aqua, Amsterdam.
Y.H. Tseng and J.H. Ferziger (2003), “A ghost-cell immersed boundary method for ow in complex geometry”, Journal of Computational Physics, 192(2):593-623
Zang, Y., R. L. Street, and J. R. Koseff (1993), “A dynamic mixed subgrid scale model and its application to turbulent recirculation flows”, Phys.Fluids, 5, 3186–3196.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5139-
dc.description.abstract本研究使用大渦流模式結合沉浸邊界法與移動網格法,模擬流體經過一結構物對底部泥沙所造成沖刷堆積的影響,大渦流模式(Large eddy simulation)為三維的水動力模式,較能捕捉到在高雷諾數下的紊流現象,在高雷諾數的流場中特別重要。結構物表面的複雜邊界主要使用沉浸邊界法(Immersed boundary method)來處理,與傳統的貼體法(body-fitting)相比,沉浸邊界法假想力的形式寫進統御方程式使其滿足邊界條件,在卡氏座標即可很有效率的處理複雜幾何或是移動網格的問題,另外再底床網格的部分則使用移動網格法(Arbitrary Lagrangian-Eulerian scheme) 計算網格座標速度使其滿足泥沙傳輸,並且模擬紊流邊界層中的底床形貌變化。
本研究一開始使用沉浸邊界法模擬流體流經一圓柱,改變雷諾數由潛變流模擬至紊流,觀察其尾流的變化,確認邊界與流場符合現實情況後,我們再依照Roulund, et al.(2005)所做的實驗配置,設定邊界條件進行模擬,並且分別討論圓柱前緣沖刷與圓柱下游沙漣(sand ripples)的形成過程,以及紊流動能在沖刷過程中所扮演的腳色,結果發現沖刷最強的區域通常都受到一個持續穩定的上升流場給帶動,如前緣的馬蹄形渦流(horseshoe vortex)。一開始前緣掏刷出來的泥沙會在圓柱後方低壓區域產生堆積,堆積丘的下游處容易產生分離流動使得沙漣更加明顯。而紊流動能大的區域通常為流場交界處,該區域由於其動能消散(disspation rate)十分強,故會使部分懸浮泥沙失去動能而在此沉積。
zh_TW
dc.description.abstractIn this study, we apply the large eddy simulation (LES) code that combines the immersed boundary method (IBM) and the arbitrary Lagrangian-Eulerian method (ALE) to simulate the evolution of the erodible bed around a structure. This code is a three dimensional computational fluid dynamics simulator, which is capable of resolving the detailed turbulent flow field. This is particularly important in the high Reynolds number flow. We employ the IBM to model the surface of the structure. Compared to traditional body-fitting methods, IBM applies the body force to satisfy the desired boundary condition. It can efficiently handle the complex geometry and moving grids in Cartesian coordinate system. In addition, we apply the ALE method in our grid. It can calculate the grid velocity to guarantee conservation of sediment mass and simulate bed form dynamics in a turbulent boundary layer.
We simulate flow over a cylinder as a test case for IBM. Cases ranging from the regimes of creeping flow to turbulent flow are investigated. The present numerical model is then validated against the experimental results by Roulund et al.(2005), who investigated erosion around a cylinder in a laboratory setting. We discuss erosion in front of the cylinder, the development of sand ripples behind the cylinder, and turbulence kinetic energy (TKE). The numerical results show that the most dramatic erosion region is affected by the steady upflow associated with the horseshoe vortex. Moreover, we observe that sediments in front of the edge pile up in the lower pressure area. Flow separation easily occurs behind the ripples, leading to the growth of the ripple amplitude. We found that high TKE occurs at regions of flow convergence, which is usually associated with strong dissipation, leading to the deposition of suspended sediments.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:52:27Z (GMT). No. of bitstreams: 1
ntu-103-R01543062-1.pdf: 5047870 bytes, checksum: a173e3d3d6f8f1b8f7c7f0074e106f09 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
圖目錄 vi
表目錄 ix
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 沉浸邊界法 3
1.3.2 底床沖刷 4
Chapter 2 理論背景與方法 7
2.1 大渦流模式 8
2.1.1 統御方程式 9
2.1.2 濾波統御方程式 10
2.1.3 曲線座標格式 12
2.1.4 流體離散化計算流程 13
2.2 移動網格與泥沙傳輸方程式 15
2.2.1 密度分層 15
2.2.2 泥沙傳輸方程式 16
2.2.3 移動網格法 17
2.2.4 掏刷方程式 18
2.2.5 底床高度方程式 19
Chapter 3 沉浸邊界法介紹與驗證 22
3.1 沉浸邊界法離散化 22
3.2 流經圓柱之潛變流驗證 27
3.3 流體流經圓柱(不同雷諾數) 31
Chapter 4 底床沖刷模擬與分析 39
4.1 模擬配置 39
4.2 流場分析I (定床) 42
4.2.1 馬蹄形渦流 42
4.2.2 尾跡渦流 45
4.2.3 底床剪應力 46
4.2.4 紊流動能 46
4.3 流場分析II (動床) 48
4.3.1 圓柱前緣分析 48
4.3.2 圓柱後端分析 53
4.4 紊流動能分析 57
4.5 侵蝕深度分析 59
Chapter 5 結論與未來工作 61
5.1 結論 61
5.2 未來工作 63
參考文獻 64
dc.language.isozh-TW
dc.title應用沉浸邊界法與移動網格模擬紊流流況下之結構物沖刷現象zh_TW
dc.titleApplication of the immersed boundary method and arbitrary Lagrangian-Eulerian scheme to simulate local scour in turbulent flowen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江允智,劉啟民
dc.subject.keyword大渦流模式,沉浸邊界法,移動網格法,局部沖刷,沙漣,馬蹄形渦流,zh_TW
dc.subject.keywordlarge-eddy simulation,immersed boundary method,arbitrary Lagrangian -Eulerian method,local scour,sand ripples,horseshoe vortex,en
dc.relation.page65
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf4.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved