Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51038
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李水盛
dc.contributor.authorYi-Li Linen
dc.contributor.author林義力zh_TW
dc.date.accessioned2021-06-15T13:24:13Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-06-20
dc.identifier.citation1. Wells, B. G.; Dipiro, J. T.; Schwinghammer, T. L.; Dipiro, C. V. Pharmacotherapy Handbook, 8th ed. The McGraw-Hill Companies, Inc. 2012. pp 1-8 & 217-236.
2. Halevy, S.; Ghislain, P. D.; Mockenhaupt, M.; Fagot, J. P.; Bouwes Bavinck, J. N.; Sidoroff, A.; Naldi, L.; Dunant, A.; Viboud, C.; Roujeau, J. C. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J. Am. Acad. Dermatol. 2008, 58(1), 25–32.
3. Roujeau, J. C.; Stern, R. S. Severe adverse cutaneous reactions to drugs. N. Engl. J. Med. 1994, 331(19), 1272–1285.
4. Tsai, S. F.; Lee, S. S. Neolignans as xanthine oxidase inhibitors from Hyptis rhomboides. Phytochemistry 2014, 101, 121–127.
5. Lin, K. C.; Lin, H. Y.; Chou, P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J. Rheumatol. 2000, 27(6), 1501–1505.
6. Choi, H. K.; Mount, D. B.; Reginato, A. M. Pathogenesis of gout. Ann. Intern. Med. 2005, 143(7), 499–516.
7. Harris, M. D.; Siegel, L. B.; Alloway, J. A. Gout and hyperuricemia - american family physician. Am. Fam. Physician. 1999, 59(4), 925–934.
8. Pacher, P.; Nivorozhkin, A.; Szabo, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev. 2006, 58(1), 87–114.
9. Hershfield, M. S.; Callaghan, J. T.; Tassaneeyakul, W.; Mushiroda, T.; Thorn, C. F.; Klein, T. E.; Lee, M. T. M. Clinical pharmacogenetics implementation consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin. Pharmacol. Ther. 2013, 93(2), 153–158.
10. Yeo, S. I. HLA-B*5801: utility and cost-effectiveness in the Asia-pacific region. Int. J. Rheum. Dis. 2013, 16(3), 254–257.
11. Hu, M.; Tomlinson, B. Febuxostat in the management of hyperuricemia and chronic gout: A review. Ther. Clin. Risk Manag. 2008, 4(6), 1209–1220.
12. Enroth, C.; Eger, B. T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E. F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(20), 10723–10728.
13. Robbers, J. E.; Speedie, M. K.; Tyler, V. E. Pharmacognosy and pharmacobiotechnology. Williams & Wilkins, 1996. pp. 130-142.
14. Lin, C. M.; Chen, C. S.; Chen, C. T.; Liang, Y. C.; Lin, J. K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun. 2002, 294(1), 167–172.
15. Chang, Y. C.; Lee, F. W.; Chen, C. S.; Huang, S. T.; Tsai, S. H.; Huang, S. H.; Lin, C. M. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities. Free Radic. Biol. Med. 2007, 43(11), 1541–1551.
16. Huang, T. C.; Hsieh, T. H.; Cheng, W. T. Flora of Taiwan, 2nd ed. 1998; Vol. 4. pp 160 & 466.
17. Sharma, P. P.; Roy, R. K.; Anurag; Gupta, D.; Vipin, K. S. Hyptis suaveolens (L.) Poit: A phyto-pharmacological review. IJCPS 4(1), 1–11.
18. Ngozi, L. The efficacy of Hyptis suaveolens: A review of its nutritional and medicinal applications. Eur. J. Med. Plants 2014, 4(6), 661–674.
19. Jesus, N. Z. T.; Falcão, H. S.; Lima, G. R. M.; Caldas Filho, M. R. D.; Sales, I. R. P.; Gomes, I. F.; Santos, S. G.; Tavares, J. F.; Barbosa-Filho, J. M.; Batista, L. M. Hyptis suaveolens (L.) Poit (Lamiaceae), a medicinal plant protects the stomach against several gastric ulcer models. J. Ethnopharmacol. 2013, 150(3), 982–988.
20. Deng, Y.; Balunas, M. J.; Kim, J. A.; Lantvit, D. D.; Chin, Y. W.; Chai, H.; Sugiarso, S.; Kardono, L. B. S.; Fong, H. H. S.; Pezzuto, J. M.; Swanson, S. M.; de Blanco, E. J. C.; Kinghorn, A. D. Bioactive 5,6-dihydro-alpha-pyrone derivatives from Hyptis brevipes. J. Nat. Prod. 2009, 72(6), 1165–1169.
21. Falcao, R. A.; do Nascimento, P. L. A.; de Souza, S. A.; da Silva, T. M. G.; de Queiroz, A. C.; da Matta, C. B. B.; Moreira, M. S. A.; Camara, C. A.; Silva, T. M. S.; Falcao, R. A.; do Nascimento, P. L. A.; de Souza, S. A.; da Silva, T. M. G.; de Queiroz, A. C.; da Matta, C. B. B.; Moreira, M. S. A.; Camara, C. A.; Silva, T. M. S. Antileishmanial phenylpropanoids from the leaves of Hyptis pectinata (L.) Poit. Evid.-Based Complement. Altern. Med. 2013, e460613.
22. Almtorp, G. T.; Hazell, A. C.; Torssell, K. B. G. A Lignan and pyrone and other constituents from Hyptis capitata. Phytochemistry 1991, 30(8), 2753–2756.
23. Beutler, J. A.; Hamel, E.; Vlietinck, A. J.; Haemers, A.; Rajan, P.; Roitman, J. N.; Cardellina, J. H.; Boyd, M. R. Structure−activity requirements for flavone cytotoxicity and binding to tubulin. J. Med. Chem. 1998, 41(13), 2333–2338.
24. Kobayasi, K. Studies on the components of the leaves of Hyptis capitata Jacq. Yakugaku Zasshi 1952, 72(1), 1–3.
25. Aycard, J. P.; Kini, F.; Kam, B.; Gaydou, E. M.; Faure, R. Isolation and identification of spicigera lactone: Complete 1H and 13C assignments using two-dimensional NMR experiments. J. Nat. Prod. 1993, 56(7), 1171–1173.
26. Pereda-Miranda, R.; Hernández, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, P.; Chai, H.; Pezzuto, J. M. Structure and stereochemistry of pectinolides A-C, novel antimicrobial and cytotoxic 5,6-dihydro-alpha-pyrones from Hyptis pectinata. J. Nat. Prod. 1993, 56(4), 583–593.
27. Fragoso-Serrano, M.; Gibbons, S.; Pereda-Miranda, R. Anti-staphylococcal and cytotoxic compounds from Hyptis pectinata. Planta Med. 2005, 71(3), 278–280.
28. Boalino, D. M.; Connolly, J. D.; McLean, S.; Reynolds, W. F.; Tinto, W. F. Alpha-pyrones and a 2(5H)-furanone from Hyptis pectinata. Phytochemistry 2003, 64(7), 1303–1307.
29. Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-Garcı́a-Rojas, C. M. Application of molecular mechanics in the total stereochemical elucidation of spicigerolide, a cytotoxic 6-tetraacetyloxyheptenyl-5,6-dihydro-alpha-pyrone from Hyptis spicigera. Tetrahedron 2001, 57(1), 47–53.
30. Lu, Y. P. Chemical investigation of Hyptis rhomboids leaves and preparation of chromone Derivatives. 2015.
31. Fun, C. E.; Svendsen, A. B. The essential oil of Hyptis suaveolens Poit. grown on aruba. Flavour Fragr. J. 1990, 5(3), 161–163.
32. Menezes, P. dos P.; Araujo, A. A. de S.; Doria, G. A. A.; Quintans-Junior, L. J.; de Oliveira, M. G. B.; dos Santos, M. R. V.; de Oliveira, J. F.; Matos, J. do R.; Carvalho, F. M. de S.; Alves, P. B.; de Matos, I. L.; dos Santos, D. A.; Marreto, R. N.; da Silva, G. F.; Serafini, M. R. Physicochemical characterization and analgesic eEffect of inclusion complexes of essential oil from Hyptis pectinata L. Poit leaves with beta-cyclodextrin. Curr. Pharm. Biotechnol. 2015, 16(5), 440–450.
33. Conti, B.; Canale, A.; Cioni, P. L.; Flamini, G.; Rifici, A. Hyptis suaveolens and Hyptis spicigera (Lamiaceae) essential oils: qualitative analysis, contact toxicity and repellent activity against Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). J. Pest Sci. 2010, 84(2), 219–228.
34. Priyadharshini, S. D.; Sujatha, V. Antioxidant and cytotoxic studies on two known compounds isolated from Hyptis suaveolens leaves. Int. J. Pharm. Pharm. Sci. 2013, 5(4), 283–290.
35. Azevedo, N. R.; Campos, I. F.; Ferreira, H. D.; Portes, T. A.; Santos, S. C.; Seraphin, J. C.; Paula, J. R.; Ferri, P. H. Chemical variability in the essential oil of Hyptis suaveolens. Phytochemistry 2001, 57(5), 733–736.
36. Prawatsri, S.; Suksamrarn, A.; Chindaduang, A.; Rukachaisirikul, T. Abietane diterpenes from Hyptis suaveolens. Chem. Biodivers. 2013, 10(8), 1494–1500.
37. Nascimento, P. F. C.; Alviano, W. S.; Nascimento, A. L. C.; Santos, P. O.; Arrigoni-Blank, M. F.; de Jesus, R. A.; Azevedo, V. G.; Alviano, D. S.; Bolognese, A. M.; Trindade, R. C. Hyptis pectinata essential oil: Chemical composition and anti-Streptococcus mutans activity. Oral Dis. 2008, 14(6), 485–489.
38. Arrigoni-Blank, M. F.; Antoniolli, A. R.; Caetano, L. C.; Campos, D. A.; Blank, A. F.; Alves, P. B. Antinociceptive activity of the volatile oils of Hyptis pectinata L. Poit. (Lamiaceae) genotypes. Phytomedicine Int. J. Phytother. Phytopharm. 2008, 15(5), 334–339.
39. Koba, K.; Raynaud, C.; Millet, J.; Chaumont, J. P.; Sanda, K. Chemical composition of Hyptis pectinata L., H. lanceolata Poit , H. suaveolens (L) Poit and H. spicigera Lam. essential oils from togo. J. Essent. Oil Bear. Plants 2007, 10(5), 357–364.
40. Ngassoum, M. B.; Jirovetz, L.; Buchbauer, G. Essential oil and headspace from Hyptis suaveolens (L.) Poit. leaves and flowers from cameroon. J. Essent. Oil Res. 1999, 11(3), 283–288.
41. Fragoso, S.; Gonzalez, C.; Pereda, M. Novel labdane diterpenes from the insecticidal plant Hyptis spicigera 1. J. Nat. Prod. 1999, 62(1), 45–50.
42. Manchand, P. S.; White, J. D.; Fayos, J.; Clardy, J. Structures of suaveolic acid and suaveolol. J. Org. Chem. 1974, 39(15), 2306–2308.
43. Ziegler, H. L.; Jensen, T. H.; Christensen, J.; Stærk, D.; Hägerstrand, H.; Sittie, A. A.; Olsen, C. E.; Staals?, T.; Ekpe, P.; Jaroszewski, J. W. Possible artefacts in the in vitro determination of antimalarial activity of natural products that incorporate into lipid bilayer: Apparent antiplasmodial activity of dehydroabietinol, a constituent of Hyptis suaveolens. Planta Med. 2002, 68(6), 547–549.
44. Arai, M. A.; Uchida, K.; Sadhu, S. K.; Ahmed, F.; Koyano, T.; Kowithayakorn, T.; Ishibashi, M. Hedgehog inhibitors from Artocarpus communis and Hyptis suaveolens. Bioorg. Med. Chem. 2015, 23(15), 4150–4154.
45. Misra, T. N.; Singh, R. S.; Upadhyay, J. A natural triterpene acid from Hyptis suaveolens. Phytochemistry 1983, 22(11), 2557–2558.
46. Misra, T. N.; Singh, R. S.; Oiha, T. N.; Upadhyay, J. Chemical constituents of Hyptis suaveolens. Part I. Spectral and biological studies on a triterpene acid. J. Nat. Prod. 1981, 44(6), 735–738.
47. Misra, T. N.; Singh, R. S.; Upadhyay, J. Triterpenoids from Hyptis suaveolens roots. Phytochemistry 1983, 22(2), 603–605.
48. Yamagishi, T.; Zhang, D. C.; Chang, J. J.; McPhail, D. R.; McPhail, A. T.; Lee, K. H. The cytotoxic principles of Hyptis capitata and the structures of the new triterpenes hyptatic acid-A and -B. Phytochemistry 1988, 27(10), 3213–3216.
49. Hu, T.; He, X. W.; Jiang, J. G. Functional analyses on antioxidant, anti-inflammatory, and antiproliferative effects of extracts and compounds from Ilex latifolia Thunb., a Chinese bitter tea. J. Agric. Food Chem. 2014, 62(34), 8608–8615.
50. Zou, Y.; Tan, C.; Wang, B.; Jiang, S.; Zhu, D. Phenolic compounds from Ranunculus chinensis. Chem. Nat. Compd. 2010, 46(1), 19–21.
51. Dai, J.; Sorribas, A.; Yoshida, W. Y.; Williams, P. G. Sebestenoids A-D, BACE1 inhibitors from Cordia sebestena. Phytochemistry 2010, 71(17-18), 2168–2173.
52. Kim, A. R.; Jin, Q.; Jin, H. G.; Ko, H. J.; Woo, E. R. Phenolic compounds with IL-6 inhibitory activity from Aster yomena. Arch. Pharm. Res. 2014, 37(7), 845–851.
53. Ha, T. J.; Lee, J. H.; Lee, M. H.; Lee, B. W.; Kwon, H. S.; Park, C. H.; Shim, K. B.; Kim, H. T.; Baek, I. Y.; Jang, D. S. Isolation and Identification of Phenolic Compounds from the Seeds of Perilla Frutescens (L.) and Their Inhibitory Activities against Α-Glucosidase and Aldose Reductase. Food Chem. 2012, 135(3), 1397–1403.
54. Al-Musayeib, N.; Perveen, S.; Fatima, I.; Nasir, M.; Hussain, A. Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules 2011, 16(12), 10214–10226.
55. Lu, Y.; Foo, L. Y.; Wong, H. Sagecoumarin, a novel caffeic acid trimer from Salvia officinalis. Phytochemistry 1999, 52(6), 1149–1152.
56. Xu, Y. M.; Smith, J. A.; Lannigan, D. A.; Hecht, S. M. Three acetylated flavonol glycosides from Forsteronia refracta that specifically inhibit p90 RSK. Bioorg. Med. Chem. 2006, 14(11), 3974–3977.
57. Benmekhbi, L.; Kabouche, A.; Kabouche, Z.; Ait-Kaki, B.; Touzani, R.; Bruneau, C. Five glycosylated flavonoids from the antibacterial butanolic extract of Pituranthos scoparius. Chem. Nat. Compd. 2008, 44(5), 639–641.
58. Teoh, W. Y.; Tan, H. P.; Ling, S. K.; Wahab, N. A.; Sim, K. S. Phytochemical investigation of Gynura bicolor leaves and cytotoxicity evaluation of the chemical constituents against HCT 116 cells. Nat. Prod. Res. 2016, 30(4), 448–451.
59. Ferreira, F. P.; de Oliveira, D. C. R. New constituents from Mikania laevigata Shultz Bip. ex Baker. Tetrahedron Lett. 2010, 51(52), 6856–6859.
60. Martic, S.; Brennan, J. D.; Brook, M. A.; Ackloo, S.; Nagy, N. Towards the development of a covalently tethered MALDI system — A study of allyl-modified MALDI matrixes. Can. J. Chem. 2007, 85(1), 66–76.
61. Liu, J.; Li, W.; Jiang, S.; Guo, Y.; Wang, G.; Lin, R. Phenolic acids and antioxidant activities of danshen injection. Chem. Nat. Compd. 2014, 50(1), 83–87.
62. Satake, T.; Kamiya, K.; Saiki, Y.; Hama, T.; Fujimoto, Y.; Kitanaka, S.; Kimura, Y.; Uzawa, J.; Endang, H.; Umar, M. Studies on the constituents of fruits of Helicteres isora L. Chem. Pharm. Bull. (Tokyo) 1999, 47(10), 1444–1447.
63. Moharram, F. A.; Marzouk, M. S.; El-Shenawy, S. M.; Gaara, A. H.; El Kady, W. M. Polyphenolic profile and biological activity of Salvia splendens leaves. J. Pharm. Pharmacol. 2012, 64(11), 1678–1687.
64. Masuda, T.; Jitoe, A.; Kato, S.; Nakatani, N. Acetylated flavonol glycosides from Zingiber zerumbet. Phytochemistry 1991, 30(7), 2391–2392.
65. Fuchino, H.; Konishi, S.; Satoh, T.; Yagi, A.; Saitsu, K.; Tatsumi, T.; Tanaka, N. Chemical evaluation of betula species in Japan. II. Constituents of Betula platyphylla var. Japonica. Chem. Pharm. Bull. 1996, 44(5), 1033–1038.
66. Hwu, J. R.; Varadaraju, T. G.; Abd-Elazem, I. S.; Huang, R. C. C. First total syntheses of oresbiusins A and B, their antipodes, and racemates: Configuration revision and anti-HIV activity. Eur. J. Org. Chem. 2012, 2012(25), 4684–4688.
67. Aoshima, H.; Miyase, T.; Warashina, T. Caffeic acid oligomers with hyaluronidase inhibitory activity from Clinopodium Gracile. Chem. Pharm. Bull. 2012, 60(4), 499–507.
68. Yahara, S.; Satoshiro, M.; Nishioka, I.; Nagasawa, T.; Oura, H. Isolation and characterization of phenolic compounds from Coptidis rhizoma. Chem. Pharm. Bull. 1985, 33(2), 527–531.
69. Grayer, R. J.; Eckert, M. R.; Veitch, N. C.; Kite, G. C.; Marin, P. D.; Kokubun, T.; Simmonds, M. S. J.; Paton, A. J. The chemotaxonomic significance of two bioactive caffeic acid esters, nepetoidins A and B, in the Lamiaceae. Phytochemistry 2003, 64(2), 519–528.
70. Sato, S.; Akiya, T.; Nishizawa, H.; Suzuki, T. Total synthesis of three naturally occurring 6,8-di-C-glycosylflavonoids: Phloretin, naringenin, and apigenin bis-C-beta-D-glucosides. Carbohydr. Res. 2006, 341(8), 964–970.
71. Ohsugi, T.; Nishida, R.; Fukami, H. Oviposition stimulant of Papilio Xuthus, a citrus-feeding swallowtail butterfly. Agric. Biol. Chem. 1985, 49(6), 1897–1900.
72. Wang, P. H.; Lee, S. S. Active chemical constituents from Sauropus androgynus. J. Chin. Chem. Soc. 1997, 44(2), 145–149.
73. Yao, T. L. Chemical investigation of the leaves of Cinnamomum validinerve. 2015.
74. Yoon, K. D.; Jeong, D. G.; Hwang, Y. H.; Ryu, J. M.; Kim, J. Inhibitors of osteoclast differentiation from Cephalotaxus koreana. J. Nat. Prod. 2007, 70(12), 2029–2032.
75. Kazuma, K.; Takahasi, T.; Sato, K.; Takeuchi, H.; Matsumoto, T.; Okuno, T. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L. Biosci. Biotechnol. Biochem. 2000, 64(8), 1588–1599.
76. Association, A. D. 2. Classification and diagnosis of diabetes. Diabetes Care 2016, 39(supplement 1), S13–S22.
77. Chang, C. H.; Shau, W. Y.; Jiang, Y. D.; Li, H. Y.; Chang, T. J.; H.-H. Sheu, W.; Kwok, C. F.; Ho, L. T.; Chuang, L. M. Type 2 diabetes prevalence and incidence among adults in Taiwan during 1999–2004: A national health insurance data set study. Diabet. Med. 2010, 27(6), 636–643.
78. Association, A. D. 7. Approaches to glycemic treatment. Diabetes Care 2016, 39(supplement 1), S52–S59.
79. Karchesy, J. J.; Hemingway, R. W. Condensed tannins: (4b→8;2b→O→7)-linked procyanidins in Arachis hypogea L. J. Agric. Food Chem. 1986, 34(6), 966–970.
80. Lou, H.; Yamazaki, Y.; Sasaki, T.; Uchida, M.; Tanaka, H.; Oka, S. A-type proanthocyanidins from peanut skins. Phytochemistry 1999, 51(2), 297–308.
81. Association, A. D. 6. Obesity management for the treatment of type 2 diabetes. Diabetes Care 2016, 39(Supplement 1), S47–S51.
82. Rosak, C.; Mertes, G. Critical evaluation of the role of acarbose in the treatment of diabetes: Patient considerations. Diabetes Metab. Syndr. Obes. Targets Ther. 2012, 5, 357–367.
83. Hj, A.; M, B.; Hp, K.; W, M.; Fo, M.; Hj, P.; H, W.; C, W. Pharmacokinetics of acarbose. Part I: Absorption, concentration in plasma, metabolism and excretion after single administration of [14C]acarbose to rats, dogs and man. Arzneimittelforschung. 1989, 39(10), 1254–1260.
84. Yee, H. S.; Fong, N. T. A review of the safety and efficacy of acarbose in diabetes mellitus. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1996, 16(5), 792–805.
85. Gu, L.; Kelm, M. A.; Hammerstone, J. F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R. L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004, 134(3), 613–617.
86. Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nNutrition and health. J. Sci. Food Agric. 2000, 80(7), 1094–1117.
87. Appeldoorn, M. M.; Vincken, J. P.; Sanders, M.; Hollman, P. C. H.; Gruppen, H. Combined normal-phase and reversed-phase liquid chromatography/ESI-MS as a tool to determine the molecular diversity of A-type procyanidins in peanut skins. J. Agric. Food Chem. 2009, 57(14), 6007–6013.
88. Hoffpauir, C. L. Peanut composition, relation to processing and utilization. J. Agric. Food Chem. 1953, 1(10), 668–671.
89. Schulze, E.; Castoro. Hoppe-Seyler’s zeitschrift fuer physiologische chemie. 1904, 41, 465–472.
90. Macheboeuf; Tayeau. Comptes rendus hebdomadaires des seances de l’academie des sciences. 1942, 214.
91. Arya, S. S.; Salve, A. R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53(1), 31–41.
92. Done, J.; Fowden, L. A new amino-acid amide in the groundnut plant (Arachis hypogaea): Evidence of the occurrence of Γ-methyleneglutamine and Γ-methyleneglutamic acid. Biochemical Journal 1952, 51(4).
93. Fowden, L.; Done, J. A third unsaturated amino aAcid in groundnut plants: Evidence for the occurrence of Γ-amino-alpha-methylenebutyric acid. Biochem. J. 1953, 55(4), 548–553.
94. Sobolev, V. S.; Sy, A. A.; Gloer, J. B. Spermidine and flavonoid conjugates from peanut (Arachis hypogaea) fowers. J. Agric. Food Chem. 2008, 56(9), 2960–2969.
95. Gopal, G. R.; Rao, G. R. Fatty acid composition of salt stressed Arachis hypogaea seedlings. Phytochemistry 1982, 21(11), 2740–2742.
96. Rao, P. V. S.; Einhorn, J.; Malosse, C.; Geiger, J. P.; Rio, B.; Ravise, A. New dienol phytoalexins isolated from Arachis hypogaea leaves infected with Puccinia arachidis Speg. Oléagineux 1990, 45(5), 225–227.
97. Kreiling, P. Ueber das vorkommen von lignocerinsäure C24H40O2 neben arachinsäure C24H40O2 im erdnussöl. Berichte Dtsch. Chem. Ges. 1888, 21(1), 880–881.
98. Lou, H.; Yuan, H.; Yamazaki, Y.; Sasaki, T.; Oka, S. Alkaloids and flavonoids from peanut skins. Planta Med. 2001, 67(4), 345–349.
99. Douglass, C. D.; Howard, W. L.; Wender, S. H. The isolation of quercitrin from peanut hulls. J. Am. Chem. Soc. 1950, 72(9), 4177–4178.
100. Daigle, D. J.; Ory, R. L.; Branch, W. D. The presence of 5,7-dihydroxyisoflavone in peanuts by high performance liquid chromatography analyses. Peanut Sci. 1985, 12(2), 60–62.
101. Turner, R. B.; Lindsey, D. L.; Davis, D. D.; Bishop, R. D. Isolation and identification of 5,7-dimethoxyisoflavone, an inhibitor of Aspergillus flavus from peanuts. Mycopathologia 1975, 57(1), 39–40.
102. Singleton, J. A.; Stikeleather, L. F.; Sanford, J. H. LC-electrospray ionization and LC-FABMS study of flavonoid glycosides extracted from peanut meal. J. Am. Oil Chem. Soc. 2002, 79(8), 741–748.
103. Yang, Y.; Ma, C. with Zhang, H.; Yerigui. Structures and antioxidant and intestinal disaccharidase inhibitory activities of A-type proanthocyanidins from peanut skin. J. Agric. Food Chem. 2013, 61(37), 8814–8820.
104. Lou, H.; Yuan, H.; Ma, B.; Ren, D.; Ji, M.; Oka, S. Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry 2004, 65(16), 2391–2399.
105. Kimura, Y.; Takesako, K.; Takahashi, Y.; Tamura, S. Isolation, identification and biological activities of growth inhibitors in peanut. Agric. Biol. Chem. 1976, 40(6), 1183–1187.
106. Kokubun, T.; Harborne, J. B. Phytoalexin induction in the sapwood of plants of the maloideae (Rosaceae): biphenyls or dibenzofurans. Phytochemistry 1995, 40(6), 1649–1654.
107. Pendse, R.; Rao, A. V. R.; Venkataraman, K. 5,7-Dihydroxychromone from Arachis hypogoea shells. Phytochemistry 1973, 12(8), 2033–2034.
108. Chen, R. S.; Wu, P. L.; Chiou, R. Y. Y. Peanut roots as a source of resveratrol. J. Agric. Food Chem. 2002, 50(6), 1665–1667.
109. Cooksey, C. J.; Garratt, P. J.; Richards, S. E.; Strange, R. N. A dienyl stilbene phytoalexin from Arachis hypogaea. Phytochemistry 1988, 27(4), 1015–1016.
110. Keen, N. T.; Ingham, J. L. New stilbene phytoalexins from American cultivars of Arachis hypogaea. Phytochemistry 1976, 15(11), 1794–1795.
111. Liu, Z.; Wu, J.; Huang, D. New stilbenoids isolated from fungus-challenged black skin peanut seeds and their adipogenesis inhibitory activity in 3T3-L1 cells. J. Agric. Food Chem. 2013, 61(17), 4155–4161.
112. Burns, J.; Yokota, T.; Ashihara, H.; Lean, M. E. J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50(11), 3337–3340.
113. Sobolev, V. S.; Krausert, N. M.; Gloer, J. B. New monomeric stilbenoids from peanut (Arachis hypogaea) seeds challenged by an Aspergillus flavus Strain. J. Agric. Food Chem. 2016, 64(3), 579–584.
114. Aoki, T.; Matsuo, K.; Suga, T.; Ohta, S. Arachisprenols: polyprenols possessing a geranyl residue from Arachis hypogaea. Phytochemistry 1997, 46(4), 715–720.
115. Peter, S.; Drescher, M.; Weidner, E. Process for extracting carotenes from carotene-containing materials. US6407306 (B1), June 18, 2002.
116. Moll, F. Die chemische natur des “erdnussalkaloids” arachin. Planta Med. 1961, 9(3), 213–215.
117. Fowden, L.; Webb, J. A. Evidence for the occurrence of Γ-methylene-alpha-oxoglutaric acid in groundnut plants (Arachis hypogaea). Biochem. J. 1955, 59(2), 228–234.
118. Huang, S. C.; Yen, G. C.; Chang, L. W.; Yen, W. J.; Duh, P. D. Identification of an antioxidant, ethyl protocatechuate, in peanut seed testa. J. Agric. Food Chem. 2003, 51(8), 2380–2383.
119. Chung, T. Y.; Eiserich, J. P.; Shibamoto, T. Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200 degree. J. Agric. Food Chem. 1993, 41(9), 1467–1470.
120. Khadem, S.; Marles, R. J. Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules 2010, 15(11), 7985–8005.
121. Kimura, Y.; Saito, M.; Inoue, T.; Tamura, S. Isolation of O-(malonylamino)benzoic acid from peanut plant. Agric. Biol. Chem. 1974, 38(8), 1507–1510.
122. Gordin-Sharir, A.; Wareing, P. F. Auxin and gibberellin-like substances in peanut (Arachis hypogaea). Nature 1964, 204(4965), 1308–1309.
123. Sobolev, V. S.; Neff, S. A.; Gloer, J. B.; Khan, S. I.; Tabanca, N.; De Lucca, A. J.; Wedge, D. E. Pterocarpenes elicited by Aspergillus caelatus in peanut (Arachis hypogaea) seeds. Phytochemistry 2010, 71(17–18), 2099–2107.
124. Fu, H. W.; Zhang, H. L.; Pei, Y. H. A new coumestan from Arachis hypogaea L. 2005, 16(7), 918–920.
125. Lin, Y.-S. Chemical investigation of Machilus konishii leaves and Hedychium coronarium rhizomes and preparation of coronarin D derivatives. 2014.
126. Wiesneth, S.; Petereit, F.; Jürgenliemk, G. Salix daphnoides: A screening for oligomeric and polymeric proanthocyanidins. Mol. Basel Switz. 2015, 20(8), 13764–13779.
127. Nonaka, G. I.; Morimoto, S.; Kinjo, J. E.; Nohara, T.; Nishioka, I. Tannins and related compounds. L. structures of proanthocyanidin A-1 and related compounds. Chem. Pharm. Bull. 1987, 35(1), 149–155.
128. Steynberg, P. J.; Cronjé, A.; Steynberg, J. P.; Bezuidenhoudt, B. C. B.; Brandt, E. V.; Ferreira, D. Oligomeric flavanoids. Part 25. Cleavage of the acetal functionality in A-type proanthocyanidins. Tetrahedron 1997, 53(7), 2591–2598.
129. Harboene, J. B. The flavonoids: Advances in research since 1986, 1st ed. Chapman & Hall/CRC, 1994. pp 23-56.
130. Kamiya, K.; Watanabe, C.; Endang, H.; Umar, M.; Satake, T. Studies on the constituents of bark of Parameria laevigata Moldenke. Chem. Pharm. Bull. 2001, 49(5), 551–557.
131. Lu, W. C.; Huang, W. T.; Kumaran, A.; Ho, C. T.; Hwang, L. S. Transformation of proanthocyanidin A2 to its isomers under different physiological pH conditions and common cell culture medium. J. Agric. Food Chem. 2011, 59, 6214-6220.
132. Lin, H. C. Chemical investigation of the leaves of Machilus philippinense (II). 2011.
133. Appeldoorn, M. M.; Sanders, M.; Vincken, J.-P.; Cheynier, V.; Le Guernevé, C.; Hollman, P. C. H.; Gruppen, H. Efficient isolation of major procyanidin A-type dimers from peanut skins and B-type dimers from grape seeds. Food Chem. 2009, 117(4), 713–720.
134. Punyasiri, P. A.; Sarath B Abeysinghe, I. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. J. Chromatogr. A 2009, 1216(19), 4295–4302.
135. Feresin, G. E.; Tapia, A.; Angel, G. R.; Delporte, C.; Erazo, N. B.; Schmeda-Hirschmann, G. free radical scavengers, anti-inflammatory and analgesic activity of Acaena magellanica. J. Pharm. Pharmacol. 2002, 54(6), 835–844.
136. Lin, Y. P.; Chen, T. Y.; Tseng, H. W.; Lee, M. H.; Chen, S. T. Neural cell protective compounds isolated from Phoenix hanceana var. Formosana. Phytochemistry 2009, 70(9), 1173–1181.
137. Lage, G. A.; Medeiros, F. da S.; Furtado, W. de L.; Takahashi, J. A.; Filho, J. D. de S.; Pimenta, L. P. S. The first report on flavonoid isolation from Annona crassiflora Mart. Nat. Prod. Res. 2014, 28(11), 808–811.
138. Wang, C. M.; Hsu, Y. M.; Jhan, Y. L.; Tsai, S. J.; Lin, S. X.; Su, C. H.; Chou, C. H. Structure elucidation of procyanidins isolated from Rhododendron formosanum and their anti-oxidative and anti-bacterial activities. Molecules 2015, 20(7), 12787–12803.
139. Hsieh, M.-C.; Shen, Y.-J.; Kuo, Y.-H.; Hwang, L. S. Antioxidative activity and active components of longan (Dimocarpus longan Lour.) Flower Extracts. J. Agric. Food Chem. 2008, 56(16), 7010–7016.
140. Karioti, A.; Tooulakou, G.; Bilia, A. R.; Psaras, G. K.; Karabourniotis, G.; Skaltsa, H. Erinea formation on Quercus ilex leaves: Anatomical, physiological and chemical responses of leaf trichomes against mite attack. Phytochemistry 2011, 72(2–3), 230–237.
141. Svedström, U.; Vuorela, H.; Kostiainen, R.; Tuominen, J.; Kokkonen, J.; Rauha, J. P.; Laakso, I.; Hiltunen, R. Isolation and identification of oligomeric procyanidins from Crataegus leaves and flowers. Phytochemistry 2002, 60(8), 821–825.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51038-
dc.description.abstract第一部份 香苦草抑制黃嘌呤氧化酶活性成分之研究
痛風是一種由尿酸結晶堆積於關節而造成的代謝性疾病;其中,黃嘌呤氧化酶在尿酸的形成中扮演很重要的角色,故臨床上常使用其抑制劑allopurinol來做為長期治療的用藥。然而,此藥物可能引發嚴重的過敏反應Stevens-Johnson syndrome,所以找尋治療痛風的替代藥物仍屬必須。根據本實驗室過去的研究,頭花香苦草(Hyptis rhomboids)中具有抑制黃嘌呤氧化酶的成分。因此,本研究旨在探索同屬物種的香苦草(H. suaveolens)中是否同樣具有抑制黃嘌呤氧化酶的成分。
香苦草莖部的乙醇萃取物經極性切割後劃分為二氯甲烷、乙酸乙酯、正丁醇和水可溶部分,再進一步對活性較佳的乙酸乙酯和正丁醇可溶部分進行分離。過程中使用Sephadex LH-20、silica gel和逆相層析管柱、離心式分配層析,以及半製備HPLC等,共計得到17個化合物,經由核磁共振光譜及質譜技術分析確認dimethyl melitrate A (9)和9'-O-methyl melitrate A (10)為新的化合物。其餘15個化合物為ursolic acid (1)、caffeic acid (2)、rosmarinic acid (3)、methyl rosmarinate (4)、kaempferol 3-O-(4-O-acetyl-alpha-L-rhamnopyranoside) (5)、oresbiusin A (6)、danshensu (7)、methyl melitrate A (8)、netpetoidin B (11)、melitric acid A (12)、sagecoumarin (13)、netpetoidin A (14)、apigenin-6,8-di-C-glucoside (15)、adenosine (16)和rutin (17)。最後,經由黃嘌呤氧化酶抑制活性測試,發現netpetoidin B (11)具有最佳抑制活性,與本實驗室過去結果一致(IC50 11.7 ± 2.5 uM vs. allopurinol 5.3 ± 0.6 uM)。
第二部分 花生衣原花青素之成分研究
糖尿病是一種代謝性疾病,其中,又以第二型糖尿病為主,佔患者總數的90%,主要致病原因可能為胰島素感受性下降。在臨床治療上,常使用以metformin為基礎的處方,再依照病情加入其他用藥,甲型葡萄糖抑制劑便是其中一項。根據電腦分子模擬發現,部分A-type dimeric proanthocyanidins對甲型葡萄糖水解酶具有良好的結合能力,而該化合物曾被報導富含於花生衣中。因此,本研究計畫以花生衣(Arachis hypogaea L.)作為A-type proanthocyanidins的來源,進行化合物結構與甲型葡萄糖水解酶抑制活性間的探討,並期望藉此賦予低經濟價值的花生衣新的再利用途徑。
花生衣的乙醇萃取物經二氯甲烷、乙酸乙酯、正丁醇和水進行極性切割,共劃分為四個可溶部分。取乙酸乙酯可溶部分經Sephadex LH-20做初步分離,利用proanthocyanidins在anisaldehyde顯色後呈現深紅色的特性,並透過ESI-MS尋找對應的分子量作為進一步分離的依據。過程中使用離心式分配層析(centrifugal partition chromatography, CPC)、逆相層析管柱及半製備HPLC等,共計得到13個化合物,經核磁共振光譜及質譜技術分析確認化合物結構為(+)-catechin (18)、(-)-epicatechin (19)、cinnamtannin D1 (20)、proanthocyanidin A1 (21)、proanthocyanidin A4 (22)、proanthocyanidin A2 (23)、epicatechin-(2beta→O→7,4beta→6)-catechin (24)、procyanidin B3 (25)、procyanidin B4 (26)、epicatechin-(2beta→O→7,4beta→8)-ent-epicatechin (27)、epicatechin-(2beta→O→7,4beta→6)-ent-catechin (28)、proanthocyanidin A6 (29)、epicatechin-(2beta→O→7,4beta→6)-ent-epicatechin (30)。另外,經甲型葡萄糖水解酶抑制活性測試發現,化合物24具有最佳抑制活性(IC50 9.7 ± 0.2 uM vs. acarbose 0.023 uM)。
zh_TW
dc.description.abstractPart 1. Chemical investigation of Hyptis suaveolens guided by xanthine oxidase inhibitory activity
Gout is a kind of metabolic diseases, caused by accumulation of uric acid crystals in the joints. Xanthine oxidase plays an important role in the production of uric acid. Thus, its inhibitor, allopurinol, is often used clinically for long-term gout therapy. This drug, however, might cause Stevens-Johnson syndrome. Therefore, the search for alternative drugs for treating gout is still in need. Our recent studies indicated that some constituents from Hyptis rhomboides are potent xanthine oxidase inhibitors. Thus the aim of this research was to investigate whether the chemical constituents of the related native species, H. suaveolens, possess similar activity.
The ethanol extract of H. suaveolens stem was divided into fractions soluble in CH2Cl2, EtOAc, n-BuOH, and water via liquid-liquid partitioning. Further separation was conducted on the EtOAc and n-BuOH-soluble fractions, which possess better anti-xanthine oxidase activity among four fractions. This effort led to the isolation of 17 compounds by combination of Sephadex LH-20, silica gel and reverse-phase column chromatography, centrifugal partition chromatography, and semi-preparative RP-HPLC. Of these, two are new, i.e., dimethyl melitrate A (9) and 9'-O-methyl melitrate A (10). The 15 known ones were identified as ursolic acid (1), caffeic acid (2), rosmarinic acid (3), methyl rosmarinate (4), kaempferol 3-O-(4-O-acetyl--L-rhamnopyranoside) (5), oresbiusin A (6), danshensu (7), methyl melitrate A (8), netpetoidin B (11), melitric acid A (12), sagecoumarin (13), netpetoidin A (14), apigenin-6,8-di-C-glucoside (15), adenosine (16), rutin (17). Their structures were elucidated by MS data and NMR (1D and 2D) spectroscopic analysis. Through xanthine oxidase bioassay, netpetoidin B (11) with IC50 11.7 ± 2.5 uM was found to possess the best inhibitory activity.
Part 2. Chemical investigation of proanthocyanidins from peanut skin
Diabetes mellitus (DM) is a kind of metabolic disorder. Type 2 DM, which accounts for 90% DM patients, might cause by the decrease of insulin sentivity. Metformin-based regimen was usually used to treat this disorder and the other drugs, such as -glucosidase inhibitor, were added depending on the personal condition. According to the molecular docking, some A-type proanthocyanidins, which are rich in peanut skin, show good docking score toward alpha-glucosidase. As a result, such type compounds were isolated from peanut skin and assayed against alpha-glucosidase to confirm the result of this virtual screening.
The ethanol extract of peanut skin was divided into fractions soluble in CH2Cl2, EtOAc, n-BuOH, and water via liquid-liquid partitioning. The EtOAc-soluble fraction was chromatographed over Sephadex LH-20, centrifugal partition chromatography, reverse-phase columns, and semi-preparative RP-HPLC, guided by ESI-MS and TLC, showing red color for dimeric proanthocyanidins while spraying with anisaldehyde reagent. This effort led to the isolation of 13 compounds. Based on 1H and 13C NMR analyses and MS data, they were identified as (+)-catechin (18), (-)-epicatechin (19)、cinnamtannin D1 (20), proanthocyanidin A1 (21), proanthocyanidin A4 (22), proanthocyanidin A2 (23), epicatechin-(2beta→O→7,4beta→6)-catechin (24), procyanidin B3 (25), procyanidin B4 (26), epicatechin-(2beta→O→7,4beta→8)-ent-epicatechin (27), epicatechin-(2beta→O→7,4beta→6)-ent-catechin (28), proanthocyanidin A6 (29), epicatechin-(2beta→O→7,4beta→6)-ent-epicatechin (30). Of these, epicatechin-(2beta→O→7,4beta→6)-catechin (24) with IC50 9.7 ± 0.2 uM was found to possess the best inhibitory activity against alpha-glucosidase.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:24:13Z (GMT). No. of bitstreams: 1
ntu-105-R03423003-1.pdf: 11554419 bytes, checksum: 9788a311e363f3124d909ce862e58a99 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents第一章 香苦草抑制黃嘌呤氧化酶活性成分之研究 1
1. 緒論及研究目的 1
1.1 研究目的 1
1.2 痛風 2
1.2.1 痛風的定義、成因及症狀 2
1.2.2 痛風的臨床治療 3
1.2.3 黃嘌呤氧化酶抑制劑 3
1.2.3.1 Allopurinol 3
1.2.3.2 Febuxostat 4
1.3 黃嘌呤氧化酶與天然物 5
1.3.1 黃嘌呤氧化酶 5
1.3.2 黃酮類(flavonoid)與黃嘌呤氧化酶 5
1.3.3 苯丙烷類(phenylpropanoid)與黃嘌呤氧化酶 6
1.4 香苦草 7
1.4.1 香苦草之簡介 7
1.4.2 香苦草屬(Hyptis)植物成分之文獻回顧 8
2. 實驗結果與討論 23
2.1 三萜類(triterpenoid)成分 25
2.1.1 Ursolic acid (1)之結構解析 25
2.2 苯丙烷類(phenylpropanoid)成分 27
2.2.1 Danshensu (7)和oresbiusin A (6)之結構解析 27
2.2.2 Caffeic acid (2)之結構解析 29
2.2.3 Netpetoidin A (14)和netpetoidin B (11)之結構解析 30
2.2.4 Rosmarinic acid (3)和methyl rosmarinate (4)之結構解析 32
2.2.5 Methyl melitrate A (8)、melitric acid A (12)、9ꞌ-O-methyl melitrate A (10)及dimethyl melitrate A (9)之結構解析 34
2.2.6 Sagecoumarin (13)之結構解析 39
2.3 黃酮類(flavonoid)成分 41
2.3.1 Kaempferol 3-O-(4-O-acetyl--L-rhamnopyranoside) (5)之結構解析 41
2.3.2 Apigenin-6,8-di-C-glucoside (15) 43
2.3.3 Rutin (17) 45
2.4 核苷類(neucleoside)成分 47
2.4.1 Adenosine (16) 47
2.5 黃嘌呤氧化酶抑制活性測試結果 48
2.6 討論 49
3. 實驗部分 51
3.1 儀器與材料 51
3.1.1 理化性質測定儀器 51
3.1.2 成分分離之儀器與材料 51
3.1.3 試劑與溶媒 52
3.1.4 黃嘌呤氧化酶抑制活性測試之試劑與儀器 52
3.2 植物來源 54
3.3 香苦草莖部成分萃取與純化 54
3.3.1 香苦草之萃取 54
3.3.2 香苦草莖部乙酸乙酯可溶部分之分離 54
3.3.2.1 化合物1之分離 55
3.3.2.2 化合物2、3、4、5之分離 55
3.3.2.3 化合物2、3、4、6、7之分離 55
3.3.2.4 化合物3、8之分離 56
3.3.2.5 化合物4、8、9、10、11之分離 56
3.3.2.6 化合物8、12、13、14之分離 56
3.3.2.7 化合物8之分離 57
3.3.3 香苦草莖部正丁醇可溶部分之分離 59
3.3.3.1 化合物15之分離 59
3.3.3.2 化合物2、16、17之分離 59
3.4 化合物之物理數據 61
3.5 黃嘌呤氧化酶抑制活性測試 65
3.5.1 原理 65
3.5.2 實驗方法 65
3.5.2.1 試劑配製 65
3.5.2.2 實驗步驟 66
3.5.2.3 IC50之計算 67
第二章 花生衣原花青素之成分研究 68
1. 緒論及研究目的 68
1.1 研究目的 68
1.2 糖尿病 69
1.2.1 糖尿病的定義、分類及成因 69
1.2.2 第二型糖尿病及其臨床治療 69
1.2.3 甲型葡萄糖水解酶抑制劑 70
1.3 原花青素 72
1.4 花生衣 73
1.4.1 花生之簡介 73
1.4.2 落花生屬(Arachis)植物成分之文獻回顧 74
2. 實驗結果與討論 85
2.1 原花青素類(Proanthocyanidin)成分 87
2.1.1 (+)-Catechin (18)和(-)-epicatechin (19)之結構解析 87
2.1.2 Procyanidin B3 (25)和procyanidin B4 (26)之結構解析 89
2.1.3 Epicatechin-(2→O→7,4→6)-catechin (24)、epicatechin-(2→O→7,4→6)-ent-catechin (28)、proanthocyanidin A6 (29)、epicatechin-(2→O→7,4→6)-ent-epicatechin (30)、proanthocyanidin A1 (21)、proanthocyanidin A2 (23)、epicatechin-(2→O→7,4→8)-ent-epicatechin (27)和proanthocyanidin A4 (22) 93
2.1.3.1 1H和13C NMR資訊及立體構型 93
2.1.3.2 立體結構 94
2.1.3.3 化合物21-24和27-30結構解析 95
2.1.4 Cinnamtannin D1 (20)之結構解析 106
2.2 甲型葡萄糖水解酶抑制活性測試結果 108
2.3 討論 110
3. 實驗部分 113
3.1 儀器與材料 113
3.1.1 理化性質測定儀器 113
3.1.2 成分分離之儀器與材料 113
3.1.3 試劑與溶媒 114
3.1.4 甲型葡萄糖水解酶抑制活性測試之試劑與儀器 114
3.1.5 電腦軟體 115
3.2 植物來源 116
3.3 花生衣成分萃取與純化 116
3.3.1 花生衣之萃取 116
3.3.2 花生衣乙酸乙酯可溶部分成分之小量分離 116
3.3.2.1 化合物18、19之分離 116
3.3.2.2 化合物20、21、22、23之分離 117
3.3.2.3 化合物21之分離 117
3.3.2.4 化合物24之分離 117
3.3.3 花生衣乙酸乙酯可溶部分之大量成分分離 119
3.3.3.1 化合物25及26之分離 119
3.3.3.2 化合物20、21、23、27之分離 119
3.3.3.3 化合物24、28、29、30之分離 120
3.4 化合物之物理數據 123
3.5 甲型葡萄糖水解酶抑制活性測試 127
3.5.1 原理 127
3.5.2 實驗方法 127
3.5.2.1 試劑配製 127
3.5.2.2 實驗步驟 128
3.5.2.3 IC50計算 129
參考資料 130
附圖 146
dc.language.isozh-TW
dc.title香苦草抑制黃嘌呤氧化酶活性成分之研究及花生衣原花青素之成分研究zh_TW
dc.titleChemical investigation of Hyptis suaveolens guided by xanthine oxidase inhibitory activity and proanthocyanidins from peanut skinen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林雲蓮,張溫良,張嘉銓
dc.subject.keyword香苦草,花生衣,黃嘌呤氧化?,甲型葡萄糖水解?,原花青素,zh_TW
dc.subject.keywordHyptis suaveolens,peanut skin,xanthine oxidase,alpha-glucosidase,proanthocyanidins,en
dc.relation.page224
dc.identifier.doi10.6342/NTU201600422
dc.rights.note有償授權
dc.date.accepted2016-06-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
11.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved