請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5090
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李瑩英 | |
dc.contributor.author | Kai-Wei Zhao | en |
dc.contributor.author | 趙凱衞 | zh_TW |
dc.date.accessioned | 2021-05-15T17:51:47Z | - |
dc.date.available | 2014-08-21 | |
dc.date.available | 2021-05-15T17:51:47Z | - |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-14 | |
dc.identifier.citation | [BGM] M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variete riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer, Berlin, 1971.
[BP] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer, Berlin, 1992. [BU] S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds, Tohoku Math. J. (2) 35 (1983), no. 2, 155–172. [C] I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press, Orlando, FL, 1984. [CD] B. Colbois and J. Dodziuk, Riemannian metrics with large λ1, Proc. Amer. Math. Soc. 122 (1994), no. 3, 905–906. [EGJ] A. El Soufi, H. Giacomini and M. Jazar, A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle, Duke Math. J. 135 (2006), no. 1, 181–202. [EI1] A. El Soufi and S. Ilias, Riemannian manifolds admitting isometric immersions by their first eigenfunctions, Pacific J. Math. 195 (2000), no. 1, 91–99. [EI2] A. El Soufi and S. Ilias, Laplacian eigenvalue functionals and metric deformations on compact manifolds, J. Geom. Phys. 58 (2008), no. 1, 89–104. [FS1] A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011), no. 5, 4011–4030. [FS2] A. Fraser and R. Schoen, Minimal surfaces and eigenvalue problems, arXiv:1304.0851 [math.DG] (2013). [FS3] A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, arXiv: 1209.3789 [math.DG] (2013). [JLNP] D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigam, I. Polterovich, How large can the first eigenvalue be on a surface of genus two?, arXiv:math/0509398 [math.SP](2005). [JNP] D. Jakobson, N. Nadirashvili and I. Polterovich, Extremal metric for the first eigenvalue on a Klein bottle, Canad. J. Math. 58 (2006), no. 2, 381–400. [K] N. Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom. 37 (1993), no. 1, 73–93 [Ka] T. Kato, Perturbation theory for linear operators, second edition, Springer, Berlin, 1976. [L] H.B. Lawson, Lectures on Minimal Submanifolds 1, Math. Lecture Series 9, Perish Inc., Berkeley, 1980. [LY] P. Li and S. -T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269–291. [MR] S. Montiel and A. Ros, Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math. 83 (1986), no. 1, 153–166 [N1] N. Nadirashvili, Berger’s isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal. 6 (1996), no. 5, 877–897. [N2] N. Nadirashvili, Isoperimetric inequality for the second eigenvalue of a sphere, J. Differential Geom. 61 (2002), no. 2, 335–340. [O] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. [Pe] R. Petrides, Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces, arXiv:1310.4697 [math.AP](2013). [Po] G. Polya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. (3) 11 (1961), 419–433. [S] R. Schoen, Lecture notes on topics in spectral geometry, at Mathematical Sciences Center, Tsinghua University, Beijing, in spring, 2013. [SY] R. Schoen and S.-T. Yau, Lectures on differential geometry, translated from the Chinese by Ding and S. Y. Cheng, preface translated from the Chinese by Kaising Tso, Conference Proceedings and Lecture Notes in Geometry and Topology, I, Internat. Press, Cambridge, MA, 1994. [W] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479. [We] R. Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal. 3 (1954), 745–753. [Y1] S. -T. Yau, Survey on partial differential equations in differential geometry, in Seminar on Differential Geometry, 3–71, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton [Y2] S. -T. Yau, Problems section, in Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton Univ. Press, 1982. [YY] P. C. Yang and S. -T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 1, 55–63. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5090 | - |
dc.description.abstract | 本論文將統整一些在球面、投影實平面以及輪胎面上求得以面積表示的拉普拉斯算子第一特徵值最優上界之方法。 | zh_TW |
dc.description.abstract | In this thesis, we will summarize some approaches to obtain sharp upper bounds of the first nonzero eigenvalues of the Laplacian operators on closed surfaces, including sphere S2, real projective plane RP2 and torus T2, in terms of their areas. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:47Z (GMT). No. of bitstreams: 1 ntu-103-R01221005-1.pdf: 714680 bytes, checksum: cb04573f369534fffb98fd5b81f0c159 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書i
致謝ii 中文摘要iii Abstract iv 1 Introduction 1 2 Sharp upper bound on S2 7 2.1 Conformal automorphisms on sphere 7 2.2 Hersch’s theorem 16 3 Sharp upper bound on RP2 19 3.1 Minimal immersions into sphere 19 3.2 Conformal area 24 3.3 λ1-minimal surfaces 31 4 Sharp upper bound on T2 37 4.1 Variational method on eigenvalue problem 37 4.2 The structure of extremal metrics of eigenvalue functionals 42 4.3 Sharp upper bound of the first eigenvalue on torus 47 5 Open problems 49 References 50 | |
dc.language.iso | en | |
dc.title | 封閉曲面上拉普拉斯算子第一特徵值的最優上界 | zh_TW |
dc.title | Sharp Upper Bounds of the First Eigenvalues of the Laplacian
Operators on Closed Surfaces | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 崔茂培,王慕道,陳泊寧,蔡忠潤 | |
dc.subject.keyword | 拉普拉斯算子,特徵值問題,譜幾何,最優上界,最優不等式, | zh_TW |
dc.subject.keyword | Laplacian operator,eigenvalue problem,spectrum geometry,sharp upper bound,sharp inequality, | en |
dc.relation.page | 52 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-14 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 697.93 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。