Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5090
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑩英
dc.contributor.authorKai-Wei Zhaoen
dc.contributor.author趙凱衞zh_TW
dc.date.accessioned2021-05-15T17:51:47Z-
dc.date.available2014-08-21
dc.date.available2021-05-15T17:51:47Z-
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation[BGM] M. Berger, P. Gauduchon and E. Mazet, Le spectre d’une variete riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer, Berlin, 1971.
[BP] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer, Berlin, 1992.
[BU] S. Bando and H. Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds, Tohoku Math. J. (2) 35 (1983), no. 2, 155–172.
[C] I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press, Orlando, FL, 1984.
[CD] B. Colbois and J. Dodziuk, Riemannian metrics with large λ1, Proc. Amer. Math. Soc. 122 (1994), no. 3, 905–906.
[EGJ] A. El Soufi, H. Giacomini and M. Jazar, A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle, Duke Math. J. 135 (2006), no. 1, 181–202.
[EI1] A. El Soufi and S. Ilias, Riemannian manifolds admitting isometric immersions by their first eigenfunctions, Pacific J. Math. 195 (2000), no. 1, 91–99.
[EI2] A. El Soufi and S. Ilias, Laplacian eigenvalue functionals and metric deformations on compact manifolds, J. Geom. Phys. 58 (2008), no. 1, 89–104.
[FS1] A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011), no. 5, 4011–4030.
[FS2] A. Fraser and R. Schoen, Minimal surfaces and eigenvalue problems, arXiv:1304.0851 [math.DG] (2013).
[FS3] A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, arXiv: 1209.3789 [math.DG] (2013).
[JLNP] D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigam, I. Polterovich, How large can the first eigenvalue be on a surface of genus two?, arXiv:math/0509398 [math.SP](2005).
[JNP] D. Jakobson, N. Nadirashvili and I. Polterovich, Extremal metric for the first eigenvalue on a Klein
bottle, Canad. J. Math. 58 (2006), no. 2, 381–400.
[K] N. Korevaar, Upper bounds for eigenvalues of conformal metrics, J. Differential Geom. 37 (1993), no. 1, 73–93
[Ka] T. Kato, Perturbation theory for linear operators, second edition, Springer, Berlin, 1976.
[L] H.B. Lawson, Lectures on Minimal Submanifolds 1, Math. Lecture Series 9, Perish Inc., Berkeley, 1980.
[LY] P. Li and S. -T. Yau, A new conformal invariant and its applications to the Willmore conjecture and
the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), no. 2, 269–291.
[MR] S. Montiel and A. Ros, Minimal immersions of surfaces by the first eigenfunctions and conformal area, Invent. Math. 83 (1986), no. 1, 153–166
[N1] N. Nadirashvili, Berger’s isoperimetric problem and minimal immersions of surfaces, Geom. Funct. Anal. 6 (1996), no. 5, 877–897.
[N2] N. Nadirashvili, Isoperimetric inequality for the second eigenvalue of a sphere, J. Differential Geom. 61 (2002), no. 2, 335–340.
[O] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.
[Pe] R. Petrides, Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces,
arXiv:1310.4697 [math.AP](2013).
[Po] G. Polya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc. (3) 11 (1961), 419–433.
[S] R. Schoen, Lecture notes on topics in spectral geometry, at Mathematical Sciences Center, Tsinghua University, Beijing, in spring, 2013.
[SY] R. Schoen and S.-T. Yau, Lectures on differential geometry, translated from the Chinese by Ding and S. Y. Cheng, preface translated from the Chinese by Kaising Tso, Conference Proceedings and Lecture Notes in Geometry and Topology, I, Internat. Press, Cambridge, MA, 1994.
[W] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen
(mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), no. 4, 441–479.
[We] R. Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal. 3 (1954), 745–753.
[Y1] S. -T. Yau, Survey on partial differential equations in differential geometry, in Seminar on Differential Geometry, 3–71, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton
[Y2] S. -T. Yau, Problems section, in Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton
Univ. Press, 1982.
[YY] P. C. Yang and S. -T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), no. 1, 55–63.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5090-
dc.description.abstract本論文將統整一些在球面、投影實平面以及輪胎面上求得以面積表示的拉普拉斯算子第一特徵值最優上界之方法。zh_TW
dc.description.abstractIn this thesis, we will summarize some approaches to obtain sharp upper bounds of the first nonzero eigenvalues of the Laplacian operators on closed surfaces, including sphere S2, real projective plane RP2 and torus T2, in terms of their areas.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:51:47Z (GMT). No. of bitstreams: 1
ntu-103-R01221005-1.pdf: 714680 bytes, checksum: cb04573f369534fffb98fd5b81f0c159 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書i
致謝ii
中文摘要iii
Abstract iv
1 Introduction 1
2 Sharp upper bound on S2 7
2.1 Conformal automorphisms on sphere 7
2.2 Hersch’s theorem 16
3 Sharp upper bound on RP2 19
3.1 Minimal immersions into sphere 19
3.2 Conformal area 24
3.3 λ1-minimal surfaces 31
4 Sharp upper bound on T2 37
4.1 Variational method on eigenvalue problem 37
4.2 The structure of extremal metrics of eigenvalue functionals 42
4.3 Sharp upper bound of the first eigenvalue on torus 47
5 Open problems 49
References 50
dc.language.isoen
dc.title封閉曲面上拉普拉斯算子第一特徵值的最優上界zh_TW
dc.titleSharp Upper Bounds of the First Eigenvalues of the Laplacian
Operators on Closed Surfaces
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee崔茂培,王慕道,陳泊寧,蔡忠潤
dc.subject.keyword拉普拉斯算子,特徵值問題,譜幾何,最優上界,最優不等式,zh_TW
dc.subject.keywordLaplacian operator,eigenvalue problem,spectrum geometry,sharp upper bound,sharp inequality,en
dc.relation.page52
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf697.93 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved