請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5071完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永耀(Yung-Yaw Chen) | |
| dc.contributor.author | Yen-Hsiang Tseng | en |
| dc.contributor.author | 曾彥翔 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:51:33Z | - |
| dc.date.available | 2019-08-26 | |
| dc.date.available | 2021-05-15T17:51:33Z | - |
| dc.date.copyright | 2014-08-26 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | [1] H. Kato and M. Billinghurst, 'Marker tracking and HMD calibration for a video-based augmented reality conferencing system,' in Augmented Reality, 1999. (IWAR '99) Proceedings. 2nd IEEE and ACM International Workshop on, 1999, pp. 85-94.
[2] C. Bichlmeier, S. M. Heining, M. Feuerstein, and N. Navab, 'The Virtual Mirror: A New Interaction Paradigm for Augmented Reality Environments,' Medical Imaging, IEEE Transactions on, vol. 28, pp. 1498-1510, 2009. [3] M. Feuerstein, T. Mussack, S. M. Heining, and N. Navab, 'Intraoperative Laparoscope Augmentation for Port Placement and Resection Planning in Minimally Invasive Liver Resection,' Medical Imaging, IEEE Transactions on, vol. 27, pp. 355-369, 2008. [4] D. Burschka, J. Corso, M. Dewan, W. Lau, M. Li, H. Lin, et al., 'Navigating inner space: 3-D assistance for minimally invasive surgery,' Robotics and Autonomous Systems, vol. 70, 2005. [5] G. Lacey, D. Ryan, D. Cassidy, and D. Young, 'Mixed-Reality Simulation of Minimally Invasive Surgeries,' IEEE MultiMedia, vol. 14, pp. 76-87, 2007. [6] D. Sindram, I. H. McKillop, J. B. Martinie, and D. A. Iannitti, 'Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting,' HPB, vol. 12, pp. 709-716, 2010. [7] K. Ming-Chun, T. Yen-Hsiang, C. Cheng-Wei, H. Ming-Chih, L. Feng-Li, Y. Jia-Yush, et al., 'Preliminary study of intracorporeal localization for endoscopy tracking,' in Automatic Control Conference (CACS), 2013 CACS International, 2013, pp. 130-134. [8] T. Lango, S. Vijayan, A. Rethy, C. Vapenstad, O. Solberg, R. Marvik, et al., 'Navigated laparoscopic ultrasound in abdominal soft tissue surgery: technological overview and perspectives,' International Journal of Computer Assisted Radiology and Surgery, vol. 7, pp. 585-599, 2012/07/01 2012. [9] H. Azimian, J. Breetzke, A. L. Trejos, R. V. Patel, M. D. Naish, T. Peters, et al., 'Preoperative planning of robotics-assisted minimally invasive coronary artery bypass grafting,' in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 1548-1553. [10] L. Jianmin, W. Shuxin, W. Xiaofei, H. Chao, and Z. Lin'an, 'Development of a novel mechanism for minimally invasive surgery,' in Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference on, 2010, pp. 1370-1375. [11] J. Li, S. Wang, X. Wang, and C. He, 'Optimization of a novel mechanism for a minimally invasive surgery robot,' The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 6, pp. 83-90, 2010. [12] J. Leven, D. Burschka, R. Kumar, G. Zhang, S. Blumenkranz, X. Dai, et al., 'DaVinci Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparoscopic Ultrasound Capability,' in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005. vol. 3749, J. Duncan and G. Gerig, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 811-818. [13] J. de Siebenthal and F. Langlotz, 'Use of a new tracking system based on ArToolkit for a surgical simulator: accuracy test and overall evaluation,' in Augmented Reality Toolkit, The First IEEE International Workshop, 2002, p. 6 pp. [14] R. Shahidi, M. R. Bax, C. R. Maurer, Jr., J. A. Johnson, E. P. Wilkinson, W. Bai, et al., 'Implementation, calibration and accuracy testing of an image-enhanced endoscopy system,' Medical Imaging, IEEE Transactions on, vol. 21, pp. 1524-1535, 2002. [15] J. Chen, Y. Wang, Y. Liu, and D. Weng, 'Navigating System for Endoscopic Sinus Surgery Based on Augmented Reality,' in Complex Medical Engineering, 2007. CME 2007. IEEE/ICME International Conference on, 2007, pp. 185-188. [16] L. Hongen, T. Inomata, I. Sakuma, and T. Dohi, '3-D Augmented Reality for MRI-Guided Surgery Using Integral Videography Autostereoscopic Image Overlay,' Biomedical Engineering, IEEE Transactions on, vol. 57, pp. 1476-1486, 2010. [17] K. A. Gavaghan, M. Peterhans, T. Oliveira-Santos, and S. Weber, 'A Portable Image Overlay Projection Device for Computer-Aided Open Liver Surgery,' Biomedical Engineering, IEEE Transactions on, vol. 58, pp. 1855-1864, 2011. [18] V. Lahanas, C. Loukas, N. Nikiteas, D. Dimitroulis, and E. Georgiou, 'Psychomotor skills assessment in laparoscopic surgery using augmented reality scenarios,' in Digital Signal Processing (DSP), 2011 17th International Conference on, 2011, pp. 1-6. [19] Q. He, N. Wei, B. Li, C. Hu, and M. Q. H. Meng, 'Marker-based quadri-ocular tracking system for surgery,' Computer Vision, IET, vol. 6, pp. 435-441, 2012. [20] H. Delingette, X. Pennec, L. Soler, J. Marescaux, and N. Ayache, 'Computational Models for Image-Guided Robot-Assisted and Simulated Medical Interventions,' Proceedings of the IEEE, vol. 94, pp. 1678-1688, 2006. [21] J. Harms, H. Feussner, M. Baumgartner, A. Schneider, M. Donhauser, and G. Wessels, 'Three-dimensional navigated laparoscopic ultrasonography: first experiences with a new minimally invasive diagnostic device,' Surg Endosc, vol. 15, pp. 1459-62, Dec 2001. [22] V. Martens, S. Schlichting, A. Besirevic, and M. Kleemann, 'LapAssistent — a laparoscopic liver surgery assistance system,' in 4th European Conference of the International Federation for Medical and Biological Engineering. vol. 22, J. Vander Sloten, P. Verdonck, M. Nyssen, and J. Haueisen, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 121-125. [23] O. V. Solberg, T. Lango, G. A. Tangen, R. Marvik, B. Ystgaard, A. Rethy, et al., 'Navigated ultrasound in laparoscopic surgery,' Minimally Invasive Therapy & Allied Technologies, vol. 18, pp. 36-53, 2009. [24] M. Feuerstein, T. Reichl, J. Vogel, J. Traub, and N. Navab, 'Magneto-Optical Tracking of Flexible Laparoscopic Ultrasound: Model-Based Online Detection and Correction of Magnetic Tracking Errors,' Medical Imaging, IEEE Transactions on, vol. 28, pp. 951-967, 2009. [25] C. T. Yeo, T. Ungi, P. U-Thainual, A. Lasso, R. C. McGraw, and G. Fichtinger, 'The Effect of Augmented Reality Training on Percutaneous Needle Placement in Spinal Facet Joint Injections,' Biomedical Engineering, IEEE Transactions on, vol. 58, pp. 2031-2037, 2011. [26] S. Speidel, E. Kuhn, S. Bodenstedt, S. Rohl, H. Kenngott, B. Muller-Stich, et al., 'Visual tracking of da Vinci instruments for laparoscopic surgery,' 2014, pp. 903608-903608-6. [27] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana, 'Virtual object manipulation on a table-top AR environment,' in Augmented Reality, 2000. (ISAR 2000). Proceedings. IEEE and ACM International Symposium on, 2000, pp. 111-119. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5071 | - |
| dc.description.abstract | 目標:本論文致力於建立一套使用圓柱形標誌的體內光學追蹤系統,用於微創手術。目標是對於待追蹤物進行空間中的定位、追蹤,得知其空間位置後,可用於其他應用,像是擴增實境與危險警告。
方法:基於在2013年提出的體內光學追蹤系統下,改變標誌的形狀,由方形改為圓柱形。因原本的系統需將一個長方形的模具固定於待追蹤物上,再將方形標誌黏貼於模具上,然而,在手術中,此長方形模具接觸到組織時,模具上的銳角可能會對組織造成不必要的傷害。而本論文提出的圓柱形標記是黏貼於圓柱形的模具上,因此不會有銳角對組織造成傷害的疑慮。由於使用圓柱形標誌進行定位是一個新穎的想法,本論文也提出一個特定的演算法對圓柱形標誌進行標誌偵測。 結果:實驗證明,在75到150毫米的觀察距離內,此系統的平均定位誤差為2.7毫米,小於在微創手術中最大的安全距離上限:20毫米。 結論:在本論文中提出的使用圓柱形標誌之光學追蹤系統可以完成在微創手術中的定位任務。此系統有三項優點:減少對組織不必要的傷害、可以進入更小的套孔,並且保留了體內光學定位系統的優點,包括較短的量測距離及更簡單的座標系統以減少座標轉換的誤差。 | zh_TW |
| dc.description.abstract | Objectives: The aim of this thesis is to create an intracorporeal optical tracking system using cylindrical marker for minimally invasive surgery. The main function is to localize and to track the tracked objects, providing positions of the tracked objects, which can be used in other applications, like augmented reality and risk warning.
Methods: Based on the intracorporeal optical tracking system proposed in 2013, shape of marker is improved from square to cylinder. In original system, it’s necessary to attach a rectangular module rigidly to the tracked object. And the square marker can be affixed to the rectangular module. However, sharp edges of the rectangular module may give rise to unnecessary damages to tissues when it touches tissues in surgery. The cylindrical marker is affixed to a cylindrical module with no sharp edges. Hence, it can reduce unnecessary damages to tissues. Because using cylindrical marker to achieve tracking work is a novel idea, a specific algorithm to detect cylindrical marker is proposed in this thesis. Results: The experiments shows that the mean error of tracking accuracy of the proposed system is 2.7 mm in observation distance from 75 to 150 mm, which is less than the maximal safe distance: 20 mm in minimally invasive surgery. Conclusions: The novel optical tracking system proposed in this thesis using cylindrical marker can achieve tracking work for minimally invasive surgery. The system has three advantages: reducing unnecessary damages to tissues, feasibility to penetrate smaller trocar, and preserving advantages of intracorporeal optical tracking system, including shorter observation distance and simpler coordinate system to reduce errors caused by coordinate transformation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:33Z (GMT). No. of bitstreams: 1 ntu-103-R01921066-1.pdf: 1592926 bytes, checksum: c35222b4e8220e5a74fb74110b603ded (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Motivation and Problem Definition 2 1.2 Previous Work 3 1.3 Proposed Approach 6 1.4 Thesis Overview 10 Chapter 2 Previous Work 11 2.1 Extracorporeal Tracking Technologies 12 2.1.1 Robot Kinematics 12 2.1.2 Optical Tracking 15 2.2 Intracorporeal Tracking Technologies 16 2.2.1 Electromagnetic Tracking 17 2.2.2 Optical Tracking Using Stereo Endoscope 19 2.2.3 Optical Tracking Using 2D Endoscope 21 2.3 Comparison and Summary 21 Chapter 3 Square Marker Optical Tracking 24 3.1 System Overview 24 3.2 Square Marker 27 3.3 Tracking Algorithm 30 3.4 Summary 35 Chapter 4 Cylindrical Marker Optical Tracking 36 4.1 System Overview 37 4.2 Cylindrical marker module 38 4.3 Pattern Design 40 4.4 Marker Detection Algorithm 44 4.4.1 Color Segmentation 45 4.4.2 Contour Detection 49 4.4.3 Rough Corner Detection 50 4.4.4 Marker Identification 52 4.4.5 Direction Determination 53 4.4.6 Precise Corner Detection 56 4.5 Multi-layer Marker Set 59 4.5.1 Achieving view-invariant 60 4.5.2 Enhancing tracking precision 63 Chapter 5 Experimental Results 68 5.1 Coordinate system calibration 69 5.1.1 Experiment setup of coordinate system calibration 69 5.1.2 Experimental results of coordinate system calibration 72 5.2 Accuracy experiment 73 5.2.1 Experiment setup of accuracy experiment 73 5.2.2 Experimental results of accuracy experiment 76 5.3 Discussions 77 5.4 Comparison 78 Chapter 6 Conclusions and Future Work 80 REFERENCES 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 體內光學追蹤 | zh_TW |
| dc.subject | 圓柱形標誌 | zh_TW |
| dc.subject | 器械追蹤 | zh_TW |
| dc.subject | Intracorporeal optical tracking | en |
| dc.subject | Cylindrical marker | en |
| dc.subject | Instrument tracking | en |
| dc.title | 使用圓柱形標誌之體內光學追蹤應用於微創手術 | zh_TW |
| dc.title | Intracorporeal Optical Tracking of Instruments Using Cylindrical Marker for Minimally Invasive Surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yush Yen),林文澧(Win-Li Lin),連豊力(Feng-Li Lian) | |
| dc.subject.keyword | 體內光學追蹤,圓柱形標誌,器械追蹤, | zh_TW |
| dc.subject.keyword | Intracorporeal optical tracking,Cylindrical marker,Instrument tracking, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 1.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
