請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50559完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | |
| dc.contributor.author | Ya-Chun Chou | en |
| dc.contributor.author | 周雅淳 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:46:09Z | - |
| dc.date.available | 2021-09-22 | |
| dc.date.copyright | 2016-09-22 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-25 | |
| dc.identifier.citation | Aggarwal, B. B. (2004). Nuclear factor-κB: The enemy within. Cancer Cell, 6(3), 203-208. doi:http://dx.doi.org/10.1016/j.ccr.2004.09.003
Ammon, H. P. (2006). Boswellic acids in chronic inflammatory diseases. Planta Med, 72(12), 1100-1116. doi:10.1055/s-2006-947227 Bardou, M., Barkun, A. N., & Martel, M. (2013). Obesity and colorectal cancer. Gut, 62(6), 933-947. doi:10.1136/gutjnl-2013-304701 Bastide, N. M., Pierre, F. H., & Corpet, D. E. (2011). Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila), 4(2), 177-184. doi:10.1158/1940-6207.capr-10-0113 Baxter, N. T., Zackular, J. P., Chen, G. Y., & Schloss, P. D. (2014). Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome, 2, 20. doi:10.1186/2049-2618-2-20 Belcheva, A., Irrazabal, T., & Martin, A. (2015). Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health? Bioessays, 37(4), 403-412. doi:10.1002/bies.201400204 Boehm, M., & Nabel, E. G. (2001). Cell cycle and cell migration: new pieces to the puzzle. Circulation, 103(24), 2879-2881. Brown, K., DeCoffe, D., Molcan, E., & Gibson, D. L. (2012). Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 4(8), 1095-1119. doi:10.3390/nu4081095 Burt, R. W. (2000). Colon cancer screening. Gastroenterology, 119(3), 837-853. doi:http://dx.doi.org/10.1053/gast.2000.16508 Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., . . . McCubrey, J. A. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 17(3), 590-603. doi:10.1038/sj.leu.2402824 Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay-Kumar, M. (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol, 104, Unit 15.25. doi:10.1002/0471142735.im1525s104 Cianchi, F., Cortesini, C., Fantappiè, O., Messerini, L., Schiavone, N., Vannacci, A., . . . Marzocca, C. (2003). Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumor angiogenesis. The American journal of pathology, 162(3), 793-801. Dalamaga, M., Diakopoulos, K. N., & Mantzoros, C. S. (2012). The role of adiponectin in cancer: a review of current evidence. Endocr Rev, 33(4), 547-594. doi:10.1210/er.2011-1015 De Robertis, M., Massi, E., Poeta, M. L., Carotti, S., Morini, S., Cecchetelli, L., . . . Fazio, V. M. (2011). The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog, 10, 9. doi:10.4103/1477-3163.78279 Delroisse, J. M., Boulvin, A. L., Parmentier, I., Dauphin, R. D., Vandenbol, M., & Portetelle, D. (2008). Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR. Microbiol Res, 163(6), 663-670. di Nuzzo, L., Orlando, R., Nasca, C., & Nicoletti, F. (2014). Molecular pharmacodynamics of new oral drugs used in the treatment of multiple sclerosis. Drug Des Devel Ther, 8, 555-568. doi:10.2147/dddt.s52428 Diehl, J. A., Cheng, M., Roussel, M. F., & Sherr, C. J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev, 12(22), 3499-3511. Donohoe, C. L., Doyle, S. L., & Reynolds, J. V. (2011). Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr, 3, 12. doi:10.1186/1758-5996-3-12 Donohoe, D. R., Holley, D., Collins, L. B., Montgomery, S. A., Whitmore, A. C., Hillhouse, A., . . . Bultman, S. J. (2014). A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov, 4(12), 1387-1397. doi:10.1158/2159-8290.cd-14-0501 Emamian, E. S. (2012). AKT/GSK3 signaling pathway and schizophrenia. Front Mol Neurosci, 5, 33. doi:10.3389/fnmol.2012.00033 Giovannucci, E., & Michaud, D. (2007). The Role of Obesity and Related Metabolic Disturbances in Cancers of the Colon, Prostate, and Pancreas. Gastroenterology, 132(6), 2208-2225. doi:http://dx.doi.org/10.1053/j.gastro.2007.03.050 Gorzelak, M. A., Gill, S. K., Tasnim, N., Ahmadi-Vand, Z., Jay, M., & Gibson, D. L. (2015). Methods for Improving Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool. PLoS One, 10(8), e0134802. doi:10.1371/journal.pone.0134802 Gupta, I., Parihar, A., Malhotra, P., Gupta, S., Ludtke, R., Safayhi, H., & Ammon, H. P. (2001). Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med, 67(5), 391-395. doi:10.1055/s-2001-15802 Gupta, J., del Barco Barrantes, I., Igea, A., Sakellariou, S., Pateras, Ioannis S., Gorgoulis, Vassilis G., & Nebreda, Angel R. (2014). Dual Function of p38α MAPK in Colon Cancer: Suppression of Colitis-Associated Tumor Initiation but Requirement for Cancer Cell Survival. Cancer Cell, 25(4), 484-500. doi:http://dx.doi.org/10.1016/j.ccr.2014.02.019 Gupta, S. C., Kim, J. H., Prasad, S., & Aggarwal, B. B. (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer and Metastasis Reviews, 29(3), 405-434. Hakansson, A., Tormo-Badia, N., Baridi, A., Xu, J., Molin, G., Hagslatt, M. L., . . . Ahrne, S. (2015). Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med, 15(1), 107-120. doi:10.1007/s10238-013-0270-5 Henkel, A., Kather, N., Mönch, B., Northoff, H., Jauch, J., & Werz, O. (2012). Boswellic acids from frankincense inhibit lipopolysaccharide functionality through direct molecular interference. Biochemical Pharmacology, 83(1), 115-121. doi:http://dx.doi.org/10.1016/j.bcp.2011.09.026 Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 5(10), 749-759. doi:10.1038/nri1703 Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87(2), 159-170. Krasinskas, A. M. (2011). EGFR Signaling in Colorectal Carcinoma. Patholog Res Int, 2011, 932932. doi:10.4061/2011/932932 Laqueur, G. L. (1964). CARCINOGENIC EFFECTS OF CYCAD MEAL AND CYCASIN, METHYLAZOXYMETHANOL GLYCOSIDE, IN RATS AND EFFECTS OF CYCASIN IN GERMFREE RATS. Fed Proc, 23, 1386-1388. Leslie, A., Carey, F. A., Pratt, N. R., & Steele, R. J. C. (2002). The colorectal adenoma–carcinoma sequence. British Journal of Surgery, 89(7), 845-860. doi:10.1046/j.1365-2168.2002.02120.x Liu, J. J., Huang, B., & Hooi, S. C. (2006). Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol, 148(8), 1099-1107. doi:10.1038/sj.bjp.0706817 Matsuoka, T., & Yashiro, M. (2014). The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers (Basel), 6(3), 1441-1463. doi:10.3390/cancers6031441 Mitsuishi, Y., Taguchi, K., Kawatani, Y., Shibata, T., Nukiwa, T., Aburatani, H., . . . Motohashi, H. (2012). Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming. Cancer Cell, 22(1), 66-79. doi:http://dx.doi.org/10.1016/j.ccr.2012.05.016 Narayan, S., & Roy, D. (2003). Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer, 2, 41. doi:10.1186/1476-4598-2-41 Narayan, S., & Roy, D. (2003). Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Molecular Cancer, 2(1), 41. Neufert, C., Becker, C., & Neurath, M. F. (2007). An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc, 2(8), 1998-2004. doi:10.1038/nprot.2007.279 Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nat Rev Immunol, 14(5), 329-342. doi:10.1038/nri3661 Normanno, N., Tejpar, S., Morgillo, F., De Luca, A., Van Cutsem, E., & Ciardiello, F. (2009). Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol, 6(9), 519-527. Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S., & Flint, H. J. (2002). The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett, 217(2), 133-139. Rhodes, J. M., & Campbell, B. J. (2002). Inflammation and colorectal cancer: IBD-associated and sporadic cancer compared. Trends in Molecular Medicine, 8(1), 10-16. doi:http://dx.doi.org/10.1016/S1471-4914(01)02194-3 Ritzhaupt, A., Ellis, A., Hosie, K. B., & Shirazi-Beechey, S. P. (1998). The characterization of butyrate transport across pig and human colonic luminal membrane. J Physiol, 507 ( Pt 3), 819-830. Rizvi, F., Shukla, S., & Kakkar, P. (2014). Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3beta/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis, 5, e1153. doi:10.1038/cddis.2014.118 Rosenberg, D. W., Giardina, C., & Tanaka, T. (2009). Mouse models for the study of colon carcinogenesis. Carcinogenesis, 30(2), 183-196. doi:10.1093/carcin/bgn267 Rubin, D. C., Shaker, A., & Levin, M. S. (2012). Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol, 3, 107. doi:10.3389/fimmu.2012.00107 Ruiz, N., Kahne, D., & Silhavy, T. J. (2009). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Micro, 7(9), 677-683. Rustgi, A. K. (2007). The genetics of hereditary colon cancer. Genes Dev, 21(20), 2525-2538. doi:10.1101/gad.1593107 Saleh, M., & Trinchieri, G. (2011). Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol, 11(1), 9-20. Sander, O., Herborn, G., & Rau, R. (1998). [Is H15 (resin extract of Boswellia serrata, 'incense') a useful supplement to established drug therapy of chronic polyarthritis? Results of a double-blind pilot study]. Z Rheumatol, 57(1), 11-16. Segain, J. P., Raingeard de la Bletiere, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., . . . Galmiche, J. P. (2000). Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut, 47(3), 397-403. Sengupta, K., Alluri, K. V., Satish, A. R., Mishra, S., Golakoti, T., Sarma, K. V., . . . Raychaudhuri, S. P. (2008). A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin for treatment of osteoarthritis of the knee. Arthritis Res Ther, 10(4), R85. doi:10.1186/ar2461 Sheng, H., Shao, J., Morrow, J. D., Beauchamp, R. D., & DuBois, R. N. (1998). Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res, 58(2), 362-366. Siegert, A., Rosenberg, C., Schmitt, W., Denkert, C., & Hauptmann, S. (2002). Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. British journal of cancer, 86(8), 1310-1315. Singh, A., Boldin-Adamsky, S., Thimmulappa, R. K., Rath, S. K., Ashush, H., Coulter, J., . . . Biswal, S. (2008). RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res, 68(19), 7975-7984. doi:10.1158/0008-5472.can-08-1401 Solis, L. M., Behrens, C., Dong, W., Suraokar, M., Ozburn, N. C., Moran, C. A., . . . Wistuba, II. (2010). Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res, 16(14), 3743-3753. doi:10.1158/1078-0432.ccr-09-3352 Streffer, J. R., Bitzer, M., Schabet, M., Dichgans, J., & Weller, M. (2001). Response of radiochemotherapy-associated cerebral edema to a phytotherapeutic agent, H15. Neurology, 56(9), 1219-1221. Sugimura, T., Wakabayashi, K., Nakagama, H., & Nagao, M. (2004). Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci, 95(4), 290-299. Sung, M. K., & Park, M. Y. (2013). Nutritional modulators of ulcerative colitis: clinical efficacies and mechanistic view. World J Gastroenterol, 19(7), 994-1004. doi:10.3748/wjg.v19.i7.994 Tak, P. P., & Firestein, G. S. (2001). NF-κB: a key role in inflammatory diseases. Journal of clinical investigation, 107(1), 7. Takahashi, M., & Wakabayashi, K. (2004). Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci, 95(6), 475-480. Tanaka, T., Kohno, H., Suzuki, R., Yamada, Y., Sugie, S., & Mori, H. (2003). A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci, 94(11), 965-973. Terzić, J., Grivennikov, S., Karin, E., & Karin, M. (2010). Inflammation and Colon Cancer. Gastroenterology, 138(6), 2101-2114.e2105. doi:http://dx.doi.org/10.1053/j.gastro.2010.01.058 Tsai, M.-J., Chang, W.-A., Huang, M.-S., & Kuo, P.-L. (2014). Tumor microenvironment: A new treatment target for cancer. ISRN biochemistry, 2014. Wang, D., Chen, J., Chen, H., Duan, Z., Xu, Q., Wei, M., . . . Zhong, M. (2012). Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway. J Biosci, 37(1), 91-101. Wang, D., & Dubois, R. N. (2006). Prostaglandins and cancer. Gut, 55(1), 115-122. doi:10.1136/gut.2004.047100 Wang, D., & Dubois, R. N. (2010a). Eicosanoids and cancer. Nat Rev Cancer, 10(3), 181-193. doi:10.1038/nrc2809 Wang, D., & Dubois, R. N. (2010b). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29(6), 781-788. doi:10.1038/onc.2009.421 Whiteside, T. L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene, 27(45), 5904-5912. Yadav, V. R., Prasad, S., Sung, B., Gelovani, J. G., Guha, S., Krishnan, S., & Aggarwal, B. B. (2012). Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int J Cancer, 130(9), 2176-2184. doi:10.1002/ijc.26251 Yadav, V. R., Prasad, S., Sung, B., Kannappan, R., & Aggarwal, B. B. (2010). Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel), 2(10), 2428-2466. doi:10.3390/toxins2102428 Yang, K., Hitomi, M., & Stacey, D. W. (2006). Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div, 1, 32. doi:10.1186/1747-1028-1-32 Zhang, P., Singh, A., Yegnasubramanian, S., Esopi, D., Kombairaju, P., Bodas, M., . . . Biswal, S. (2010). Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther, 9(2), 336-346. doi:10.1158/1535-7163.mct-09-0589 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50559 | - |
| dc.description.abstract | 大腸直腸癌(colorectal cancer)逐漸成為全世界普遍盛行的癌症之一,流行病學研究指出發炎反應會加劇腫瘤的形成(tumorigenesis),其中乳香樹脂在印度傳統醫學中常用於治療多種發炎相關的疾病,本實驗所使用的天然物是乳香超臨界二氧化碳(CO2)萃取物,乳香樹脂中的主要成分為boswellic acids,利用LC-MS/MS分析萃取物中含有四種boswellic acids,包括β-boswellic acid、acetyl-β-boswellic acid、11-keto-β-boswellic acid和acetyl-11-keto-β-boswellic acid,雖然boswellic acids已被認為具有抗腫瘤生成的潛力,然而其機制尚不明確。故本實驗將更進一步以AOM/DSS致癌模式評估乳香萃取物抑制小鼠腸道腫瘤形成之功效,結果顯示在給予乳香萃取物之後可顯著提升小鼠存活率以及減少腸道腫瘤的形成,且從腸道組織分析的結果可以看出攝食乳香萃取物能藉由抑制NF-κB及調節MAPKs進而降低發炎酵素inducible nitric oxide synthase (iNOS)和cyclooxygenase-2 (COX-2)等之蛋白質表現量,此外乳香萃取物也能藉由減少磷酸化之Akt和GSK3β及其下游的cyclin D1來抑制細胞之增生。另外,我們也觀察到AOM/DSS誘導之小鼠在給予乳香萃取物後,能增加腸道中梭菌目(Clostridiales)的含量以及減少擬桿菌目(Bacteroidales)之比例。綜合以上結果我們認為乳香萃取物具有可發展為預防結腸直腸癌膳食補充劑之潛力。 | zh_TW |
| dc.description.abstract | Colorectal cancer (CRC) become a worldwide public health problem. In the previous studies, inflammation-linked carcinogenesis is well accepted concept and is often observed. Boswellia serrata resin has been used in India traditional medicine to treat a variety of inflammatory-related diseases. The most significant components of its supercritical CO2 extraction analysis by LC-MS/MS are boswellic acids including β-boswellic acid, acetyl-β-boswellic acid, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid. Although boswellic acids have been shown to be potential anti-tumorigenesis phytochemicals, but their mechanisms involved are not clear. In the present study, we investigated the chemopreventive effects of a Boswellia serrata (BS) extract on azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in ICR mice. We found that the treatment with BS extract can restore the shortening of the colon length, enhance the survival rate and reduce the colonic tumor growth. Western blot and histological analysis revealed that dietary BS extract could markedly reduce the protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs) and nuclear expression of NF-κB. Furthermore, BS extract reduced cell proliferation via inhibiting phosphorylation level of Akt, GSK3β and downregulation of cyclin D1. In addition, we also observed the changes on colonic microbiota after fed with BS extract that enhanced the ratio of Clostridiales and decreased abundance of Bacteroidales in AOM/DSS-treated mice. These results suggest that dietary administration of BS extract may alleviate colonic tumorigenesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:46:09Z (GMT). No. of bitstreams: 1 ntu-105-R03641031-1.pdf: 5997578 bytes, checksum: d293b6d036a8fd24ba96877884f49773 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 II Abstract III 目錄 IV 附圖索引 VII 圖目錄 X 表目錄 XI 縮寫表 XII 第壹章、文獻回顧 1 第一節 大腸直腸癌(Colorectal cancer; CRC)之簡介 1 (一)大腸癌之流行病學概況 1 (二)大腸的構造及生理功能 3 (三)大腸直腸癌的分類 5 (四)大腸直腸癌的分期 6 (五)大腸直腸癌的形成過程 7 (六)人類基因表現與大腸癌的關係 8 (七)形成大腸癌之危險因子 10 第二節 發炎與腸癌的形成過程 14 (一)類二十碳酸(Eicosanoids)與癌症 14 (二) COX-2與細胞凋亡的關係 15 (三) COX-2促進腸癌的進展 16 (四) NF-κB的促發炎(pro-inflammation)機制與癌症形成之關係 16 (五) Nrf2的功能與細胞增生 19 (六) Nrf2的調控 20 第三節 細胞週期(Cell cycle) 22 (一)細胞週期的分期 22 (二)細胞週期的調控 22 (三)PI3K/Akt/GSK3β路徑在細胞週期中扮演的角色 25 第四節 腸道菌相(gut microbiota) 27 (一)腸道菌的分門 27 (二)正常腸道菌相與腸道障壁之維持 27 (三)腸道菌之代謝物(metabolites)與大腸癌 28 第五節 乳香(Boswellia serrata resin)之簡介 30 (一)乳香的來源及功效 30 (二)超臨界流體萃取乳香 30 (三) Boswellic acid analogs 32 第六節 誘導發炎之細胞模式 33 (一)巨噬細胞 33 (二)脂多醣(LPS)誘導發炎反應之機制 33 (三)一氧化氮(NO)與誘發型一氧化氮合成酶(iNOS) 34 第七節 誘發大腸癌之動物模式 35 (一)AOM/DSS二階段致癌模式 35 第貳章、實驗目的與架構 40 第一節 實驗目的 40 第二節 實驗架構 40 第參章、材料與方法 43 第一節 實驗材料 43 (一)儀器設備與耗材 43 (二)試劑與藥品 44 第二節 細胞試驗 45 (一)細胞培養 45 (二)細胞存活率測試 45 (三) Nitrie之測定 46 第三節 動物實驗 48 (一)動物來源及飼養方式 48 (二)AOM/DSS致癌模式 48 (三)蛋白質膠體電泳(SDS-PAGE)與西方墨點法 50 (四)組織的脫水、包埋與切片 54 (五)Hematoxylin & eosin stain 56 (六) Immunohistochemistry (IHC) stain 57 (七)腸道菌相分析 60 第四節 統計分析 63 第肆章、結果 64 第一節、乳香(BS)萃取物能減少LPS所誘導之小鼠巨噬細胞RAW264.7的一氧化氮(NO)生成 64 第二節、乳香(BS)萃取物對AOM誘導之小鼠所產生的生理變化及腸道組織型態的影響 64 第三節、乳香(BS)萃取物改善AOM/DSS誘導之小鼠腫瘤的形成 65 第四節、乳香(BS)萃取物藉由降低發炎反應及MAPKs的活性抑制AOM/DSS所誘導的腸道腫瘤生成 66 第五節、乳香(BS)萃取物透過調節PI3K/Akt路徑抑制腫瘤細胞的增生 67 第六節、乳香(BS)萃取物對AOM/DSS誘導之小鼠糞便中菌相的影響 68 第伍章、討論 69 第陸章、結論 72 第柒章、圖表 73 第捌章、參考文獻 86 第玖章、附錄 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 乳香 | zh_TW |
| dc.subject | 腸道菌 | zh_TW |
| dc.subject | Azoxymethane/Dextran sulfate sodium (AOM/DSS) | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | 乳香 | zh_TW |
| dc.subject | 腸道菌 | zh_TW |
| dc.subject | Azoxymethane/Dextran sulfate sodium (AOM/DSS) | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | Boswellia serrata (BS) | en |
| dc.subject | colorectal cancer (CRC) | en |
| dc.subject | inflammation | en |
| dc.subject | Azoxymethane/Dextran sulfate sodium (AOM/DSS) | en |
| dc.subject | gut microbiome | en |
| dc.subject | Boswellia serrata (BS) | en |
| dc.subject | colorectal cancer (CRC) | en |
| dc.subject | inflammation | en |
| dc.subject | Azoxymethane/Dextran sulfate sodium (AOM/DSS) | en |
| dc.subject | gut microbiome | en |
| dc.title | 乳香萃取物透過抑制發炎相關路徑減緩AOM/DSS所誘發的大腸腫瘤生成 | zh_TW |
| dc.title | Boswellia Serrata resin extract alleviates azoxymethane/dextran sulfate sodium-induce colon tumorigenesis via inhibition of inflammation related signaling pathways | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何元順,王朝鐘,郭靜娟,何其儻 | |
| dc.subject.keyword | 乳香,大腸癌,發炎,Azoxymethane/Dextran sulfate sodium (AOM/DSS),腸道菌, | zh_TW |
| dc.subject.keyword | Boswellia serrata (BS),colorectal cancer (CRC),inflammation,Azoxymethane/Dextran sulfate sodium (AOM/DSS),gut microbiome, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201601221 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 5.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
