Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50471
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇銘嘉
dc.contributor.authorShih-Yi Leeen
dc.contributor.author李士毅zh_TW
dc.date.accessioned2021-06-15T12:42:08Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citation1. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 2014; 129:e28-e292.
2. Reeve JL, Duffy AM, O'Brien T, et al. Don't lose heart--therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med 2005; 9:609-622.
3. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357:1121-1135.
4. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2015; 131:e29-322.
5. Lehnart SE. Understanding the physiology of heart failure through cellular and in vivo models-towards targeting of complex mechanisms. Exp Physiol 2013; 98:622-628.
6. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 2005; 111:2837-2849.
7. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 2003; 65:45-79.
8. Diwan A, Dorn GW, 2nd. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 2007; 22:56-64.
9. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest 1985; 76:1713-1719.
10. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 2005; 14:170-175.
11. Gulcin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006; 217:213-220.
12. Xiang L, Xiao L, Wang Y, et al. Health benefits of wine: don't expect resveratrol too much. Food Chem 2014; 156:258-263.
13. Jung UJ, Lee MK, Park YB, et al. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 2006; 318:476-483.
14. Spilioti E, Jaakkola M, Tolonen T, et al. Phenolic Acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS One 2014; 9:e94860.
15. Wang X, Stavchansky S, Zhao B, et al. Cytoprotection of human endothelial cells from menadione cytotoxicity by caffeic acid phenethyl ester: the role of heme oxygenase-1. Eur J Pharmacol 2008; 591:28-35.
16. Koriem KM, Abdelhamid AZ, Younes HF. Caffeic acid protects tissue antioxidants and DNA content in methamphetamine induced tissue toxicity in Sprague Dawley rats. Toxicol Mech Methods 2013; 23:134-143.
17. Mansour HH, Tawfik SS. Early treatment of radiation-induced heart damage in rats by caffeic acid phenethyl ester. Eur J Pharmacol 2012; 692:46-51.
18. Kumaran KS, Prince PS. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage. Cell Stress Chaperones 2010; 15:791-806.
19. Ku HC, Lee SY, Chen CH, et al. TM-1-1DP exerts protective effect against myocardial ischemia reperfusion injury via AKT-eNOS pathway. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:539-548.
20. Kumaran KS, Prince PS. Protective effect of caffeic acid on cardiac markers and lipid peroxide metabolism in cardiotoxic rats: an in vivo and in vitro study. Metabolism 2010; 59:1172-1180.
21. Lee ES, Uhm KO, Lee YM, et al. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochem Biophys Res Commun 2007; 361:854-858
22. Weng YC, Chiu HL, Lin YC, et al. Antihyperglycemic effect of a caffeamide derivative, KS370G, in normal and diabetic mice. J Agric Food Chem 2010; 58:10033-10038.
23. Weng YC, Chuang CF, Chuang ST, et al. KS370G, a synthetic caffeamide derivative, improves left ventricular hypertrophy and function in pressure-overload mice heart. Eur J Pharmacol 2012; 684:108-115.
24. Weng YC, Chuang ST, Lin YC, et al. Caffeic acid phenylethyl amide protects against the metabolic consequences in diabetes mellitus induced by diet and streptozocin. Evid Based Complement Alternat Med 2012; 2012:984780.
25. Ho YJ, Chen WP, Chi TC, et al. Caffeic acid phenethyl amide improves glucose homeostasis and attenuates the progression of vascular dysfunction in Streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2013; 12:99.
26. Ho YJ, Lee AS, Chen WP, et al. Caffeic acid phenethyl amide ameliorates ischemia/reperfusion injury and cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2014; 13:98.
27. Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 1977; 252:8731-8739.
28. Solaini G, Harris DA. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 2005; 390:377-394.
29. Dobson GP, Himmelreich U. Heart design: free ADP scales with absolute mitochondrial and myofibrillar volumes from mouse to human. Biochim Biophys Acta 2002; 1553:261-267.
30. O'Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 2004; 94:420-432.
31. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 2004; 61:461-470.
32. Kemp BE, Stapleton D, Campbell DJ, et al. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003; 31:162-168.
33. Yeh CH, Chen TP, Wang YC, et al. AMP-activated protein kinase activation during cardioplegia-induced hypoxia/reoxygenation injury attenuates cardiomyocytic apoptosis via reduction of endoplasmic reticulum stress. Mediators Inflamm 2010; 2010:130636.
34. Calvert JW, Gundewar S, Jha S, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008; 57:696-705.
35. Kim AS, Miller EJ, Young LH. AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf) 2009; 196:37-53.
36. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005; 85:1093-1129.
37. Nickel A, Loffler J, Maack C. Myocardial energetics in heart failure. Basic Res Cardiol 2013; 108:358.
38. Ide T, Tsutsui H, Kinugawa S, et al. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999; 85:357-363.
39. Sawyer DB, Colucci WS. Mitochondrial oxidative stress in heart failure: 'oxygen wastage' revisited. Circ Res 2000; 86:119-120.
40. Tsutsui H, Ide T, Kinugawa S. Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal 2006; 8:1737-1744.
41. Tsutsui H. Mitochondrial oxidative stress and heart failure. Intern Med 2006; 45:809-813.
42. Khechaduri A, Bayeva M, Chang HC, et al. Heme levels are increased in human failing hearts. J Am Coll Cardiol 2013; 61:1884-1893.
43. Kindo M, Gerelli S, Bouitbir J, et al. Pressure overload-induced mild cardiac hypertrophy reduces left ventricular transmural differences in mitochondrial respiratory chain activity and increases oxidative stress. Front Physiol 2012; 3:332.
44. Schwarz K, Siddiqi N, Singh S, et al. The breathing heart - mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol 2014; 171:134-143.
45. Rosca MG, Hoppel CL. Mitochondrial dysfunction in heart failure. Heart Fail Rev 2013; 18:607-622.
46. Neubauer S. The failing heart--an engine out of fuel. N Engl J Med 2007; 356:1140-1151.
47. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res 2009; 81:412-419.
48. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 2004; 95:135-145.
49. Yoshikawa Y, Takaki M. Energy utility of failing heart. Nihon Yakurigaku Zasshi 2004; 123:77-86.
50. Majzunova M, Dovinova I, Barancik M, et al. Redox signaling in pathophysiology of hypertension. J Biomed Sci 2013; 20:69.
51. Monassier JP. Reperfusion injury in acute myocardial infarction: from bench to cath lab. Part II: Clinical issues and therapeutic options. Arch Cardiovasc Dis 2008; 101:565-575.
52. Prasad A, Stone GW, Holmes DR, et al. Reperfusion injury, microvascular dysfunction, and cardioprotection: the 'dark side' of reperfusion. Circulation 2009; 120:2105-2112.
53. Menees DS, Peterson ED, Wang Y, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med 2013; 369:901-909.
54. Monassier JP. Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part I: Basic considerations. Arch Cardiovasc Dis 2008; 101:491-500.
55. Jennings RB, Sommers HM, Smyth GA, et al. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 1960; 70:68-78.
56. Cerra FB, Lajos TZ, Montes M, et al. Hemorrhagic infarction: A reperfusion injury following prolonged myocardial ischemic anoxia. Surgery 1975; 78:95-104.
57. Cross TG, Scheel-Toellner D, Henriquez NV, et al. Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000; 256:34-41.
58. Russell RR, 3rd, Li J, Coven DL, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 2004; 114:495-503.
59. Hausenloy DJ, Tsang A, Mocanu MM, et al. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 2005; 288:H971-976.
60. Yellon DM, Baxter GF. Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med 1999; 9:245-249.
61. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004; 61:448-460.
62. Powers SK, Murlasits Z, Wu M, et al. Ischemia-reperfusion-induced cardiac injury: a brief review. Med Sci Sports Exerc 2007; 39:1529-1536.
63. Heyndrickx GR, Millard RW, McRitchie RJ, et al. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975; 56:978-985.
64. Bolli R, Marban E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79:609-634.
65. Downey JM. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol 1990; 52:487-504.
66. Reimer KA, Jennings RB. Failure of the xanthine oxidase inhibitor allopurinol to limit infarct size after ischemia and reperfusion in dogs. Circulation 1985; 71:1069-1075.
67. Zhao ZQ, Velez DA, Wang NP, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 2001; 6:279-290.
68. Piper HM, Schwartz P, Spahr R, et al. Anoxic injury of adult cardiac myocytes. Basic Res. Cardiol. 1985; 80:37-41.
69. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002; 282:C227-241.
70. Piper HM, Kasseckert S, Abdallah Y. The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res 2006; 70:170-173.
71. Hausenloy DJ, Yellon DM. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 2003; 35:339-341.
72. Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 2003; 60:617-625.
73. Di Lisa F, Menabo R, Canton M, et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 2001; 276:2571-2575.
74. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995; 307 ( Pt 1):93-98.
75. Liu YB, Yu B, Li SF, et al. Mechanisms mediating the cardioprotective effects of rapamycin in ischaemia-reperfusion injury. Clin Exp Pharmacol Physiol 2011; 38:77-83.
76. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 1979; 195:468-477.
77. Steenbergen C, Hill ML, Jennings RB. Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ Res 1987; 60:478-486.
78. Neely JR, Rovetto MJ, Whitmer JT, et al. Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 1973; 225:651-658.
79. Das AM, Harris DA. Regulation of the mitochondrial ATP synthase in intact rat cardiomyocytes. Biochem J 1990; 266:355-361.
80. Khandoudi N, Delerive P, Berrebi-Bertrand I, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma, inhibits the Jun NH(2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes 2002; 51:1507-1514.
81. Vuorinen K, Ylitalo K, Peuhkurinen K, et al. Mechanisms of ischemic preconditioning in rat myocardium. Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase. Circulation 1995; 91:2810-2818.
82. Ambrosio G, Zweier JL, Duilio C, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 1993; 268:18532-18541.
83. Buja LM, Weerasinghe P. Unresolved issues in myocardial reperfusion injury. Cardiovasc Pathol 2010; 19:29-35.
84. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res 1998; 38:291-300.
85. Piper HM, Garcia-Dorado D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 1999; 68:1913-1919.
86. Murphy E, Cross H, Steenbergen C. Sodium regulation during ischemia versus reperfusion and its role in injury. Circ Res 1999; 84:1469-1470.
87. Imahashi K, Kusuoka H, Hashimoto K, et al. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 1999; 84:1401-1406.
88. Maddaford TG, Pierce GN. Myocardial dysfunction is associated with activation of Na+/H+ exchange immediately during reperfusion. Am J Physiol 1997; 273:H2232-2239.
89. Hearse DJ, Humphrey SM, Bullock GR. The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 1978; 10:641-668.
90. Vanden Hoek TL, Li C, Shao Z, et al. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 1997; 29:2571-2583.
91. Guarnieri C, Flamigni F, Caldarera CM. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J Mol Cell Cardiol 1980; 12:797-808.
92. Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006; 70:181-190.
93. Sheu SS, Wang W, Cheng H, et al. Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury. Future Cardiol 2008; 4:551-554.
94. Wang W, Fang H, Groom L, et al. Superoxide flashes in single mitochondria. Cell 2008; 134:279-290.
95. Chen JX, Zeng H, Tuo QH, et al. NADPH oxidase modulates myocardial Akt, ERK1/2 activation, and angiogenesis after hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol 2007; 292:H1664-1674.
96. Akhlaghi M, Bandy B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2009; 46:309-317.
97. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 2004; 61:481-497.
98. Zimmet JM, Hare JM. Nitroso-redox interactions in the cardiovascular system. Circulation 2006; 114:1531-1544.
99. Pennell D. Myocardial salvage: retrospection, resolution, and radio waves. Circulation 2006; 113:1821-1823.
100. Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 2006; 70:191-199.
101. Murphy E, Steenbergen C. Preconditioning: the mitochondrial connection. Annu Rev Physiol 2007; 69:51-67.
102. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 1979; 195:453-459.
103. Kroemer G, Petit P, Zamzami N, et al. The biochemistry of programmed cell death. FASEB J 1995; 9:1277-1287.
104. Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 2000; 256:19-26.
105. Gibson CM. Time is myocardium and time is outcomes. Circulation 2001; 104:2632-2634.
106. Schomig A, Ndrepepa G, Mehilli J, et al. Therapy-dependent influence of time-to-treatment interval on myocardial salvage in patients with acute myocardial infarction treated with coronary artery stenting or thrombolysis. Circulation 2003; 108:1084-1088.
107. Longnus SL, Segalen C, Giudicelli J, et al. Insulin signalling downstream of protein kinase B is potentiated by 5'AMP-activated protein kinase in rat hearts in vivo. Diabetologia 2005; 48:2591-2601.
108. Shmist YA, Kamburg R, Ophir G, et al. N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine improves myocardial protection against ischemia by modulation of intracellular Ca2+ homeostasis. J Pharmacol Exp Ther 2005; 313:1046-1057.
109. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167-1174.
110. Liu C, Liang B, Wang Q, et al. Activation of AMP-activated protein kinase α1 alleviates endothelial cell apoptosis by increasing the expression of anti-apoptotic proteins Bcl-2 and survivin. J Biol Chem 2010; 285:15346-15355.
111. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65:385-411.
112. Legtenberg RJ, Houston RJ, Oeseburg B, et al. Metformin improves cardiac functional recovery after ischemia in rats. Horm Metab Res 2002; 34:182-185.
113. Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion. J Invest Surg 2007; 20:195-203.
114. Uchiyama T, Engelman RM, Maulik N, et al. Role of Akt signaling in mitochondrial survival pathway triggered by hypoxic preconditioning. Circulation 2004; 109:3042-3049.
115. Nativi-Nicolau J, Ryan JJ, Fang JC. Current therapeutic approach in heart failure with preserved ejection fraction. Heart Fail Clin 2014; 10:525-538.
116. Lupon J, de Antonio M, Vila J, et al. Development of a novel heart failure risk tool: the barcelona bio-heart failure risk calculator (BCN bio-HF calculator). PLoS One 2014; 9:e85466.
117. Wang S, Wu J, Wang Z, et al. Crosstalk between Src and β-arrestin2 orchestrates cardiac hypertrophic responses under mechanical stresses. Cardiovascular Regenerative Medicine 2014; 1: e484.
118. Lucas E, Jurado-Pueyo M, Vila-Bedmar R, et al. Linking cardaic insulin resistance and heart failure: GRK2 as an integrative node. Cardiovasc Regen Med 2015; 2:doi: 10.14800/crm.14586.
119. Pandey R, Ahmed RP. MicroRNAs inducing proliferation of quiescent adult cardiomyocytes. Cardiovasc Regen Med 2015; 2:doi: 10.14800/crm.14519.
120. Coronel R, de Groot JR, van Lieshout JJ. Defining heart failure. Cardiovasc Res 2001; 50:419-422.
121. O'Rourke MF. Defining diastolic heart failure. Circulation 2001; 103:E82.
122. Belch JJ, Bridges AB, Scott N, et al. Oxygen free radicals and congestive heart failure. Br Heart J 1991; 65:245-248.
123. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 2011; 301:H2181-2190.
124. Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 2002; 8:132-140.
125. Cohn JN, Levine B, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311:819-823.
126. Brooks WW, Conrad CH. Isoproterenol-induced myocardial injury and diastolic dysfunction in mice: structural and functional correlates. Comp Med 2009; 59:339-343.
127. Zhang GX, Kimura S, Nishiyama A, et al. Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 2005; 65:230-238.
128. Carll AP, Willis MS, Lust RM, et al. Merits of non-invasive rat models of left ventricular heart failure. Cardiovasc Toxicol 2011; 11:91-112.
129. Lebeche D, Dalal R, Jang M, et al. Transgenic models of heart failure: elucidation of the molecular mechanisms of heart disease. Heart Fail Clin 2005; 1:219-236.
130. Wang QD, Bohlooly YM, Sjoquist PO. Murine models for the study of congestive heart failure: Implications for understanding molecular mechanisms and for drug discovery. J Pharmacol Toxicol Methods 2004; 50:163-174.
131. Francis GS. Pathophysiology of chronic heart failure. Am J Med 2001; 110 Suppl 7A:37S-46S.
132. Mann DL. Mechanisms and models in heart failure: A combinatorial approach. Circulation 1999; 100:999-1008.
133. Iannini JP, Spinale FG. The identification of contributory mechanisms for the development and progression of congestive heart failure in animal models. J Heart Lung Transplant 1996; 15:1138-1150.
134. Nicholson C. Chronic heart failure: pathophysiology, diagnosis and treatment. Nurs Older People 2014; 26:29-38.
135. Alehagen U, Johansson P, Bjornstedt M, et al. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol 2013; 167:1860-1866.
136. Gomes KM, Campos JC, Bechara LR, et al. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res 2014:498-508.
137. Dedkova EN, Seidlmayer LK, Blatter LA. Mitochondria-mediated cardioprotection by trimetazidine in rabbit heart failure. J Mol Cell Cardiol 2013; 59:41-54.
138. Dai DF, Chen T, Szeto H, et al. Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 2011; 58:73-82.
139. Webster KA. A sirtuin link between metabolism and heart disease. Nat Med 2012; 18:1617-1619.
140. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5:253-295.
141. Tanno M, Kuno A, Horio Y, et al. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol 2012; 107:273.
142. Hall JA, Dominy JE, Lee Y, et al. The sirtuin family's role in aging and age-associated pathologies. J Clin Invest 2013; 123:973-979.
143. Lu TM, Tsai, JY, Chen YC, et al. Downregulation of Sirt1 as aging change in advanced heart failure. Journal of Biomedical Science 2014; 21.
144. Hsu CP, Zhai P, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 2010; 122:2170-2182.
145. Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 2008; 105:14447-14452.
146. Shinmura K, Tamaki K, Sano M, et al. Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 2011; 109:396-406.
147. Portal L, Martin V, Assaly R, et al. A model of hypoxia-reoxygenation on isolated adult mouse cardiomyocytes: characterization, comparison with ischemia-reperfusion, and application to the cardioprotective effect of regular treadmill exercise. J Cardiovasc Pharmacol Ther 2013; 18:367-375.
148. Ku HC, Chen WP, Su MJ. DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:197-207.
149. Abrahamsen J, Norrie B, Andersen PK, et al. pH in physiological salt solutions: direct measurements. Acta Anaesthesiol Scand 1990; 34:616-618.
150. Ku HC, Chen WP, Su MJ. DPP4 deficiency exerts protective effect against H2O2 induced oxidative stress in isolated cardiomyocytes. PLoS One 2013; 8:e54518.
151. Kemp BE, Mitchelhill KI, Stapleton D, et al. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 1999; 24:22-25.
152. Russell RR, III, Bergeron R, Shulman GI, et al. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 1999; 277:H643-649.
153. Chang L, Chiang SH, Saltiel AR. Insulin signaling and the regulation of glucose transport. Mol Med 2004; 10:65-71.
154. Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ 2008; 15:521-529.
155. Cook SA, Matsui T, Li L, et al. Transcriptional effects of chronic Akt activation in the heart. J Biol Chem 2002; 277:22528-22533.
156. Miinea CP, Sano H, Kane S, et al. AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 2005; 391:87-93.
157. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation 2007; 116:434-448.
158. Grassi G, Seravalle G, Quarti-Trevano F, et al. Excessive sympathetic activation in heart failure with obesity and metabolic syndrome: characteristics and mechanisms. Hypertension 2007; 49:535-541.
159. Jaswal JS, Keung W, Wang W, et al. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 2011; 1813:1333-1350.
160. Manchester J, Kong X, Nerbonne J, et al. Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism. Am J Physiol 1994; 266:E326-333.
161. Sun D, Nguyen N, DeGrado TR, et al. Ischemia induces translocation of the insulin-responsive glucose transporter GLUT4 to the plasma membrane of cardiac myocytes. Circulation 1994; 89:793-798.
162. Ji L, Zhang X, Liu W, et al. AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS One 2013; 8:e69910.
163. Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 2000; 95:75-83.
164. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 2009; 297:E578-591.
165. Lopaschuk GD, Wambolt RB, Barr RL. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther. 1993 Jan;264:135-144.
166. Lopaschuk GD. AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes (Lond) 2008; 32 Suppl 4:S29-35.
167. Ouchi N, Kobayashi H, Kihara S, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem 2004; 279:1304-1309.
168. Sag D, Carling D, Stout RD, et al. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 2008; 181:8633-8641.
169. Leclerc GM, Leclerc GJ, Fu G, et al. AMPK-induced activation of Akt by AICAR is mediated by IGF-1R dependent and independent mechanisms in acute lymphoblastic leukemia. J Mol Signal 2010; 5:15.
170. Goncharov DA, Kudryashova TV, Ziai H, et al. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation 2014; 129:864-874.
171. Volkers M, Konstandin MH, Doroudgar S, et al. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation 2013; 128:2132-2144.
172. Reibel DK, Rovetto MJ. Myocardial ATP synthesis and mechanical function following oxygen deficiency. Am J Physiol 1978; 234:H620-624.
173. Anderson M, Moore D, Larson D. Comparison of isoproterenol and dobutamine in the induction of cardiac hypertrophy and fibrosis. Perfusion 2008; 23:231-235.
174. Herrmann JE, Heale J, Bieraugel M, et al. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo. Toxicol Appl Pharmacol 2014; 274:302-312.
175. Murakami Y, Zhang Y, Cho YK, et al. Myocardial oxygenation during high work states in hearts with postinfarction remodeling. Circulation 1999; 99:942-948.
176. Gong G, Liu J, Liang P, et al. Oxidative capacity in failing hearts. Am J Physiol Heart Circ Physiol 2003; 285:H541-548.
177. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 2013; 61:599-610.
178. Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res 2014; 114:524-537.
179. Lai L, Yan L, Gao S, et al. Type 5 adenylyl cyclase increases oxidative stress by transcriptional regulation of manganese superoxide dismutase via the SIRT1/FoxO3a pathway. Circulation 2013; 127:1692-1701.
180. Jain K, Suryakumar G, Prasad R, et al. Upregulation of cytoprotective defense mechanisms and hypoxia-responsive proteins imparts tolerance to acute hypobaric hypoxia. High Alt Med Biol 2013; 14:65-77.
181. Chiu CZ, Wang BW, Shyu KG. Molecular regulation of the expression of leptin by hypoxia in human coronary artery smooth muscle cells. J Biomed Sci 2015; 22:5.
182. Tanaka T, Yamaguchi J, Shoji K, et al. Anthracycline inhibits recruitment of hypoxia-inducible transcription factors and suppresses tumor cell migration and cardiac angiogenic response in the host. J Biol Chem 2012; 287:34866-34882.
183. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005; 115:500-508.
184. Archer SL, Gomberg-Maitland M, Maitland ML, et al. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 2008; 294:H570-578.
185. Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3:177-185.
186. Kerbey AL, Randle PJ, Cooper RH, et al. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J 1976; 154:327-348.
187. Whitehouse S, Cooper RH, Randle PJ. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J 1974; 141:761-774.
188. Lee SY, Ku HC, Kuo YH, et al. Pyrrolidinyl caffeamide against ischemia/reperfusion injury in cardiomyocytes through AMPK/AKT pathways. J Biomed Sci 2015; 22:18.
189. Lee SY, Ku HC, Kuo YH, et al. Caffeic acid ethanolamide prevents cardiac dysfunction through sirtuin dependent cardiac bioenergetics preservation. J Biomed Sci 2015; 22:80.
190. Ku HC, Lee SY, Yang KC, et al. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart. PLoS One 2016; 11:e0148545.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50471-
dc.description.abstractBackground:
Coronary heart disease and heart failure are the leading causes of death in the world. Developing new therapies against these diseases are still required. In myocardial ischemia/reperfusion (I/R) stress, the uncoupling of glycolysis and glucose oxidation causes lactate accumulation, cell death and myocardial infarction. In addition, the changes in cardiac oxidative stress, bioenergetics and catecholamine play major roles in the progression heart failure. Caffeic acid, one of the major phenolic constituents in nature, is as an antioxidant and known to have cardioprotective effects. In HEp3 and C2C12 cells, caffeic acid stimulates AMPK activity. Metformin, an AMPK activator, has antidiabetic and cardioprotective effects. Pyrrolidinyl caffeamide (PLCA) and caffeic acid ethanolamide (CAEA) are synthesized caffeic acid derivatives. Hence, we aimed to compare the cardioprotective effects of PLCA, CAEA with caffeic acid and metformin in this study. In the first study, we investigated the effects of PLCA on the neonatal rat ventricular myocytes (NRVM) in hypoxia/reoxygenation (H/R) stress, and its effects on the rats in myocardial I/R injury. In the second study, we explored the effects of CAEA on the pathogenesis of heart failure.
Results:
In the first study, cardiomyocytes were isolated and subjected to 6-hour hypoxia followed by 18-hour reoxygenation. PLCA (0.1 to
3 μM) and metformin (30 μM) were added in the different groups before hypoxia. PLCA at 1 μM and metformin at 30 μM exerted similar protective effects on NRVM in H/R stress, represented by the cell viability restoration and the cell apoptosis alleviation. PLCA up-regulated p-AMPK, p-AKT, and GLUT4 expression, and thus attenuated the accumulation of cardiac lactate and the infarct size in myocardial I/R injury.
In the second study, isoproterenol increased cellular and mitochondria oxidative stress in HL-1 cells. The mice subjected to two-week isoproterenol resulted in ventricular hypertrophy, myocardial fibrosis, an elevation of lipid peroxidation, a reduction in cardiac adenosine triphosphate and left ventricular ejection fraction, suggesting oxidative stress and bioenergetics alternation in the progression of catecholamine induced cardiac dysfunction. CAEA restored oxygen consumption rates and adenosine triphosphate contents. In addition, CAEA alleviated isoproterenol induced cardiac remodeling and cardiac oxidative stress, and restored cardiac bioenergetics and function. CAEA recovered sirtuin 1 and sirtuin 3 activities, and attenuated manganese superoxide dismutase and hypoxia-inducible factor 1-α expressions, which resulted in the alleviation of isoproterenol induced cardiac injury.
Conclusions:
PLCA increases AMPK and AKT phosphorylation, which couples glycolysis and glucose oxidation, thereby attenuates lactate accumulation and apoptotic cell death. Therefore, we provide a potential drug to treat myocardial I/R injury in a new therapeutic strategy.
In addition, CAEA prevents catecholamine induced cardiac damage, and is therefore a possible new therapeutic approach to avert heart failure progression.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:42:08Z (GMT). No. of bitstreams: 1
ntu-105-D00443004-1.pdf: 2734464 bytes, checksum: 012b536f5c4fb3570200fec656d8bc98 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents序言及謝辭 Acknowledgement 2
英文縮寫表 Abbreviations 3
中文摘要 4
關鍵詞 5
Abstract 6
Keywords 8
Chapter One: Introduction 14
Chapter Two: Background- Myocardial Ischemia-reperfusion Injury and Heart Failure 16
2.1 Normal cardiomyocyte metabolism and cardiac energetics 16
2.2 Cardiac energy metabolism and bioenergetics in heart diseases 17
2.3 Myocardial ischemia reperfusion injury 18
2.3-1 The course of myocardial ischemia reperfusion injury 18
2.3-2 Causes of cardiomyocyte death in myocardial ischemia-reperfusion injury 19
2.3-2a Pathophysiology of cardiomyocyte necrosis in myocardial ischemia-reperfusion injury 20
2.3-2b Pathophysiology of cardiomyocyte apoptosis in myocardial ischemia-reperfusion injury 23
2.3-3 Agents and their mechanisms against myocardial ischemia-reperfusion injury 24
2.4 Heart failure 27
2.4-1 Catecholamine in heart failure 27
2.4-2 Potential targets against oxidative stress induced heart failure 28
2.5 Cardioprotective effects of caffeic acid and its derivatives 30
2.6 Preliminary data analysis on the effects of caffeic acid and its derivatives on catecholamine induced heart failure 31
Chapter Three: The Effects of Pyrrolidinyl Caffeamide on Myocardial Ischemia-reperfusion Injury- Study Designs and Research Methods 32
3.1 Ethics statement 32
3.2 In vitro study for hypoxia-reoxygenation injury 33
3.2-1 Isolated neonatal rat ventricle myocytes 33
3.2-2 Experimental model of hypoxia-reoxygenation injury 34
3.3 In vivo myocardial ischemia-reperfusion injury experimental model 34
3.4 Pyrrolidinyl caffeamide preparation 35
3.4-1 Evaluation of the effects of pyrrolidinyl caffeamide on hypoxia-reoxygenation injury and myocardial ischemia-reperfusion injury 36
3.4-2 Detection of cardiac bioenergetics 38
3.5 Statistical analysis 38
Chapter Four: The Effects of Pyrrolidinyl Caffeamide on Myocardial Ischemia-reperfusion Injury- Results 39
4.1 Comparison of pyrrolidinyl caffeamide with metformin for cellular protective effects in hypoxia-reoxygenation injury 39
4.2 Comparison of pyrrolidinyl caffeamide with metformin for cellular protein expressions in hypoxia-reoxygenation injury 39
4.3 Pyrrolidinyl caffeamide and metformin alleviates cell death in hypoxia-reoxygenation injury 40
4.4 Pyrrolidinyl caffeamide against hypoxia-reoxygenation injury through the AMPK and AKT pathway
 40
4.5 Pyrrolidinyl caffeamide alleviates myocardial ischemia-reperfusion injury 42
4.6 Pyrrolidinyl caffeamide improved p-AMPK, p-AKT, and GLUT4 expression in myocardial ischemia-reperfusion injury 42
Chapter Five: The Effects of Pyrrolidinyl Caffeamide on Myocardial Ischemia-reperfusion Injury- Discussion 51
5.1 Pyrrolidinyl caffeamide reduces apoptosis in hypoxia-reoxygenation injury through the increases in p-AMPK and p-AKT expression 51
5.2 Pyrrolidinyl caffeamide increases cellular glucose utilization in hypoxia-reoxygenation stress is p-AMPK and p-AKT dependent 51
5.3 Pyrrolidinyl caffeamide increases cellular glucose utilization in ischemia-reperfusion injury in the manner of p-AMPK and p-AKT cooperation 52
5.4 Pyrrolidinyl caffeamide reduces apoptosis and infarct size in myocardial ischemia-reperfusion injury is p-AMPK and p-AKT dependent 55
Chapter Six: The Effects of Caffeic Acid Ethaloamide in Isoproterenol induced Heart Failure- Study Designs and Research Methods 57
6.1 Ethics statement 57
6.2 In vivo heart failure experimental model 57
6.3 In vitro study for catecholamine induced oxidative stress 58
6.4 Caffeic acid ethanolamide preparation 58
6.5 Evaluation of heart structure, cardiac function, oxidative stress, bioenergetics, protein activity and expression 59
6.6 Evaluation of cellular oxidative stress, bioenergetics and protein expression 64
6.7 Statistical analysis 66
Chapter Seven: The Effects of Caffeic Acid Ethaloamide in Isoproterenol Induced Heart Failure- Results 67
7.1 Caffeic acid ethaloamide prevents isoproterenol induced myocardial remodeling
 67
7.2 Caffeic acid ethaloamide alleviates isoproterenol induced cardiac dysfunction and bioenergetic insufficiency
 67
7.3 CAEA recovers cardiac manganese superoxide dismutase and reduces oxidative stress in isoproterenol induced heart failure
 68
7.4 Caffeic acid ethaloamide reduces isoproterenol induced cellular and mitochondrial oxidative stress 69
7.5 Caffeic acid ethaloamide preserves cellular bioenergetics and redox state in isoproterenol- treated HL-1 cardiomyocytes
 68
7.6 CAEA preserves cardiac bioenergetics in isoproterenol induced cardiac dysfunction is sirtuin dependent 71
Chapter Eight: The Effects of Caffeic Acid Ethaloamide in Isoproterenol Induced Heart Failure- Discussion 78
8.1 Isoproterenol increases cellular oxidative stress and mitochondrial superoxide, which results in cardiac remodeling, bioenergetics alternation and dysfunction 78
8.2 Caffeic acid ethanolamide against catecholamine induced cardiac cellular and mitochondrial oxidative stress and cardiac dysfunction is sirtuin 1 and sirtuin 3 dependent 79
8.3 HIF-1α is a potential link between catecholamine induced cardiac oxidative stress and metabolic shift 80
8.4 Caffeic acid ethanolamide reverses HIF-1α expression and restores cellular redox state 81
Chapter Nine: Conclusion and Prospective for The Effects of Caffeic Acid Derivatives on Acute and Chronic Myocardial Stress 83
References 88
dc.language.isoen
dc.subject冠狀動脈心臟疾病zh_TW
dc.subject心臟衰竭zh_TW
dc.subject咖啡酸zh_TW
dc.subject冠狀動脈心臟疾病zh_TW
dc.subject心臟衰竭zh_TW
dc.subject咖啡酸zh_TW
dc.subjectischemia-reperfusion injuryen
dc.subjectischemia-reperfusion injuryen
dc.subjectheart failureen
dc.subjectcaffeic acid derivativesen
dc.subjectheart failureen
dc.subjectcaffeic acid derivativesen
dc.title兩種咖啡酸衍生物的心臟保護作用zh_TW
dc.titleCardioprotective Effects of Two Caffeic Acid Derivativesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee顏茂雄,吳美環,楊鎧鍵,陳文彬
dc.subject.keyword冠狀動脈心臟疾病,心臟衰竭,咖啡酸,zh_TW
dc.subject.keywordischemia-reperfusion injury,heart failure,caffeic acid derivatives,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201601242
dc.rights.note有償授權
dc.date.accepted2016-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
Appears in Collections:藥學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
2.67 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved