請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50336
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂廷璋(Ting-Jang Lu) | |
dc.contributor.author | Yen-Chiao Yang | en |
dc.contributor.author | 楊硯喬 | zh_TW |
dc.date.accessioned | 2021-06-15T12:36:48Z | - |
dc.date.available | 2018-08-03 | |
dc.date.copyright | 2016-08-03 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-29 | |
dc.identifier.citation | 沈明來。試驗設計學。九州圖書文物有限公司。2004。
呂振宇。以高效能液相層析串聯質譜儀分析半乳寡糖之結構特徵。國立台灣大學食品科技研究所碩士論文。台北,台灣。 2014。 Ben, X.-M.; Zhou, X.-Y.; Zhao, W.-H.; Yu, W.-L.; Pan, W.; Zhang, W.-L.; Wu, S.-M.; Van Beusekom, C. M.; Schaafsma, A., Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants. Chin. Med. J. (Engl.) 2004, 117, 927-931. Boehm, G.; Stahl, B.; Mattila-Sandholm, T.; Saarela, M., Oligosaccharides. Functional dairy products 2003, 203-243. Breadmore, M.; Hilder, E.; Kazarian, A., Fluorophores and Chromophores for the Separation of Carbohydrates by Capillary Electrophoresis. In Capillary Electrophoresis of Carbohydrates, Springer: 2011; pp 23-51. Brokl, M.; Hernández-Hernández, O.; Soria, A. C.; Sanz, M. L., Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. J Chromatogr A 2011, 1218, 7697-7703. Cardelle-Cobas, A.; Martínez-Villaluenga, C.; Sanz, M. L.; Montilla, A., Gas chromatographic–mass spectrometric analysis of galactosyl derivatives obtained by the action of two different β-galactosidases. Food Chem. 2009, 114, 1099-1105. Cardelle-Cobas, A.; Corzo, N.; Olano, A.; Peláez, C.; Requena, T.; Ávila, M., Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Int. J. Food Microbiol. 2011, 149, 81-87. Chatchatee, P.; Lee, W. S.; Carrilho, E.; Kosuwon, P.; Simakachorn, N.; Yavuz, Y.; Schouten, B.; Logtens-de Graaff, P.; Szajewska, H., Effects of growing-up milk supplemented with prebiotics and LCPUFAs on infections in young children. J Pediatr Gastr Nutr 2014, 58, 428-437. Cheng, H. L.; Her, G. R., Determination of linkages of linear and branched oligosaccharides using closed-ring chromophore labeling and negative ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 1322-1330. Cheng, H. L.; Pai, P. J.; Her, G. R., Linkage and branch determination of N-linked oligosaccharides using sequential degradation/closed-ring chromophore labeling/negative ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 248-59. Chiavaro, E.; Vittadini, E.; Corradini, C., Physicochemical characterization and stability of inulin gels. Eur Food Res Technol 2007, 225, 85-94. Chung, C. H.; Mirakhur, B.; Chan, E.; Le, Q.-T.; Berlin, J.; Morse, M.; Murphy, B. A.; Satinover, S. M.; Hosen, J.; Mauro, D., Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1, 3-galactose. New Engl. J. Med. 2008, 358, 1109-1117. Coppa, G. V.; Zampini, L.; Galeazzi, T.; Facinelli, B.; Ferrante, L.; Capretti, R.; Orazio, G., Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 2006, 59, 377-382. Coulier, L.; Timmermans, J.; Bas, R.; Van Den Dool, R.; Haaksman, I.; Klarenbeek, B.; Slaghek, T.; Van Dongen, W., In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. J. Agric. Food Chem. 2009, 57, 8488-95. Delzenne, N. M., Oligosaccharides: state of the art. Proc. Nutr. Soc. 2003, 62, 177-182. Domon, B.; Costello, C. E., A Systematic Nomenclature for Carbohydrate Fragmentations in FAB-MS/MS Spectra of Glycoconjugates. Glycoconjugate J 1988, 5, 397-409. Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. T.; Smith, F., Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350-356. Ecangelista, R. A.; Liu, M.-S.; Chen, F.-T. A., Characterization of 9-aminopyrene-1, 4, 6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 1995, 67, 2239-2245. Gänzle, M. G., Lactose: galacto-oligosaccharides. In Encyclopedia of dairy science, 2nd ed.; Fuquay, I. J. W.; Fox, P. F.; McSweeney, P., Eds. Elsevier: Oxford, UK, 2011. Garozzo, D.; Giuffrida, M.; Impallomeni, G.; Ballistreri, A.; Montaudo, G., Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry. Anal. Chem. 1990, 62, 279-286. Hager, J. W., A new linear ion trap mass spectrometer. Rapid Commun Mass Sp 2002, 16, 512-526. Harvey, D. J., Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B 2011, 879, 1196-225. Hernández, O.; Montañés, F.; Clemente, A.; Moreno, F. J.; Sanz, M. L., Characterization of galactooligosaccharides derived from lactulose. J Chromatogr A 2011, 1218, 7691-7696. Hernandez-Hernandez, O.; Calvillo, I.; Lebron-Aguilar, R.; Moreno, F. J.; Sanz, M. L., Hydrophilic interaction liquid chromatography coupled to mass spectrometry for the characterization of prebiotic galactooligosaccharides. J Chromatogr A 2012, 1220, 57-67. Honda, S.; Iwase, S.; Makino, A.; Fujiwara, S., Simultaneous Determination of Reducing Monosaccharides by Capillary Zone Electrophoresis as the Borate Complexes of N-2 Pyridylglycamines. Anal. Biochem. 1989, 176, 72-77. Hong, P.; Ninonuevo, M. R.; Lee, B.; Lebrilla, C.; Bode, L., Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br. J. Nutr. 2009, 101, 482-486. Ikonomou, M. G.; Blades, A. T.; Kebarle, P., Electrospray-ion spray: a comparison of mechanisms and performance. Anal. Chem. Insights 1991, 63, 1989-1998. Kabel, M. A.; Heijnis, W. H.; Bakx, E. J.; Kuijpers, R.; Voragen, A. G.; Schols, H. A., Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-1,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides. J Chromatogr A 2006, 1137, 119-26. Kobata, A., Structures and functions of the sugar chains of glycoproteins. In Eur. J. Biochem., Springer: 1993; pp 207-225. Kunz, C.; Rudloff, S.; Baier, W.; Klein, N.; Strobel, S., Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 2000, 20, 699-722. Kwon, H.; Kim, J., High Performance Liquid Chromatography of Mono-and Oligosaccharides Derivatized with p-Aminobenzoic Ethyl Ester on a C18-Bonded Silica Column. J. Liq. Chromatogr. Rel. Technol. 1995, 18, 1437-1449. Li, D.; Her, G., Structural analysis of chromophore‐labeled disaccharides and oligosaccharides by electrospray ionization mass spectrometry and high‐performance liquid chromatography/electrospray ionization mass spectrometry. J. Mass Spectrom. 1998, 33, 644-652. Mahoney, R. R., Galactosyl-oligosaccharide formation during lactose hydrolysis: a review. Food Chem. 1998, 63, 147-154. Matsuura, F.; Imaoka, A., Chromatographic separation of asparagine-linked oligosaccharides labeled with an ultravioletabsorbing compound, p-aminobenzoic acid ethyl ester. Glycoconjugate J. 1988, 5, 13-26. Morrow, A. L.; Ruiz-Palacios, G. M.; Altaye, M.; Jiang, X.; Guerrero, M. L.; Meinzen-Derr, J. K.; Farkas, T.; Chaturvedi, P.; Pickering, L. K.; Newburg, D. S., Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 2004, 145, 297-303. Murphy, O., Non-polyol low-digestible carbohydrates: food applications and functional benefits. Br. J. Nutr. 2001, 85, S47-S53. Newburg, D. S.; Ruiz-Palacios, G. M.; Morrow, A. L., Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 2005, 25, 37-58. Oriol, R.; Pendu, J.; Mollicone, R., Genetics of ABO, H, Lewis, X and related antigens. Vox Sang. 1986, 51, 161-171. Otieno, D. O., Synthesis of β-Galactooligosaccharides from Lactose Using Microbial β-Galactosidases. Compr Rev Food Sci F 2010, 9, 471-482. Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D., Ionization and transmission efficiency in an electrospray ionization–mass spectrometry interface. J. Am. Soc. Mass Spectrom. 2007, 18, 1582-1590. Qian, W.-J.; Jacobs, J. M.; Liu, T.; Camp, D. G.; Smith, R. D., Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications. Mol. Cell. Proteomics 2006, 5, 1727-1744. Robinson, S.; Bergström, E.; Seymour, M.; Thomas-Oates, J., Screening of underivatized oligosaccharides extracted from the stems of Triticum aestivum using porous graphitized carbon liquid chromatography-mass spectrometry. Anal Chem 2007, 79, 2437-2445. Rocklin, R. D.; Pohl, C. A., Determination of carbohydrates by anion exchange chromatography with pulsed amperometric detection. J. Liq. Chromatogr. 1983, 6, 1577-1590. Ruiz-Matute, A. I.; Sanz, M.; Martínez-Castro, I., Use of gas chromatography–mass spectrometry for identification of a new disaccharide in honey. J Chromatogr A 2007, 1157, 480-483. Ruiz-Matute, A. I.; Brokl, M.; Soria, A. C.; Sanz, M. L.; Martínez-Castro, I., Gas chromatographic–mass spectrometric characterisation of tri-and tetrasaccharides in honey. Food Chem. 2010, 120, 637-642. Ruiz-Palacios, G. M.; Cervantes, L. E.; Ramos, P.; Chavez-Munguia, B.; Newburg, D. S., Campylobacter jejuni binds intestinal H (O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 2003, 278, 14112-14120. Saito, T.; Itoh, T.; Adachi, S., Chemical structure of three neutral trisaccharides isolated in free form from bovine colostrum. Carbohydr. Res. 1987, 165, 43-51. Sako, T.; Matsumoto, K.; Tanaka, R., Recent progress on research and applications of non-digestible galacto-oligosaccharides. Int. Dairy J. 1999, 9, 69-80. Sanz, M. L.; Gibson, G. R.; Rastall, R. A., Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 2005, 53, 5192-5199. Schwartz, J. C.; Senko, M. W.; Syka, J. E., A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659-669. Slegte, J. d., Determination of trans-Galactooligosaccharides in Selected Food Products by Ion-Exchange Chromatography: Collaborative Study. J. AOAC Int. 2002, 85, 417-423. Smilowitz, J. T.; Lebrilla, C. B.; Mills, D. A.; German, J. B.; Freeman, S. L., Breast milk oligosaccharides: structure-function relationships in the neonate. Annu. Rev. Nutr. 2014, 34, 143. Smiricky-Tjardes, M.; Flickinger, E.; Grieshop, C.; Bauer, L.; Murphy, M.; Fahey, G., In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J. Anim. Sci. 2003, 81, 2505-2514. Somogyi, M., A new reagent for the determination of sugars. J. Biol. Chem. 1945, 160, 61-68. Splechtna, B.; Nguyen, T.-H.; Steinbo, M.; Kulbe, K. D.; Lorenz, W.; Haltrich, D., Production of prebiotic galactose-oligosaccharides from lactose using beta-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 2006, 4999-5006. Syage, J.; Short, L.; Cai, S.-S., APPI: The Second Source for LC-MS. 2008. Takao, T.; Tambara, Y.; Nakamura, A.; Yoshino, K. i.; Fukuda, H.; Fukuda, M.; Shimonishi, Y., Sensitive Analysis of Oligosaccharides Derivatized with 4‐Aminobenzoic Acid 2‐(Diethylamino) ethyl Ester by Matrix‐assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun Mass Sp 1996, 10, 637-640. Totten, S. M.; Zivkovic, A. M.; Wu, S.; Ngyuen, U.; Freeman, S. L.; Ruhaak, L. R.; Darboe, M. K.; German, J. B.; Prentice, A. M.; Lebrilla, C. B., Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J. Proteome Res. 2012, 11, 6124-6133. Uchida, Y., Preparation of chitosan oligomers with purified chitosanase and its application. In Chitin and Chitosan, Braek, G. S., T. Anthonsen and P. Sandford, Ed. Elsevier Applied Science: London, 1989. Urrutia, P.; Rodriguez-Colinas, B.; Fernandez-Arrojo, L.; Ballesteros, A. O.; Wilson, L.; Illanes, A.; Plou, F. J., Detailed analysis of galactooligosaccharides synthesis with beta-galactosidase from Aspergillus oryzae. J. Agric. Food Chem. 2013, 61, 1081-7. van Leeuwen, S. S.; Kuipers, B. J. H.; Dijkhuizen, L.; Kamerling, J. P., Development of a 1H NMR structural-reporter-group concept for the analysis of prebiotic galacto-oligosaccharides of the [β-d-Galp-(1→x)]n-d-Glcp type. Carbohydr. Res. 2014, 400, 54-58. Vliegenthart, J. F.; Dorland, L.; Halbeek, H. v., High-resolution, 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. Adv. Carbohydr. Chem. Biochem. 1983, 41, 209-374. Vulevic, J.; Rastall, R. A.; Gibson, G. R., Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol. Lett. 2004, 236, 153-159. Westphal, Y.; Schols, H.; Voragen, A.; Gruppen, H., Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis. J Chromatogr A 2010, 1217, 689-695. Zhang, H.; Brokman, S. M.; Fang, N.; Pohl, N. L.; Yeung, E. S., Linkage position and residue identification of disaccharides by tandem mass spectrometry and linear discriminant analysis. Rapid Commun Mass Sp 2008, 22, 1579-1586. Zivkovic, A. M.; German, J. B.; Lebrilla, C. B.; Mills, D. A., Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. USA 2011, 108, 4653-4658. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50336 | - |
dc.description.abstract | 食品工業上利用乳糖為基質以β-galactosidase進行轉醣反應生產半乳寡醣 (galacto-oligosaccharide, GOS) 來補足嬰兒配方奶粉中相對於母乳中寡醣成份之不足,以維持嬰兒腸道益生菌相的增生,而GOS中的半乳糖與葡萄糖單體主要以β構型鍵結且其組成結構複雜。為針對半乳寡醣結構產物進行解析,本研究建立高效能液相層析串聯質譜法分析並檢測市售GOS產品之異構物組成。先以分子篩層析法初步檢視樣品聚合度組成分布,而後將原態及經對胺基苯甲酸乙酯 (p-aminobenzoic acid ethyl ester, ABEE) 衍生之衍生態分別以GCC-ESI-MSn和Polyamine II-PAD-ESI-MSn兩種方式分析。分析結果顯示,市售六種半乳寡醣產品聚合度均小於六,且以二、三醣結構為主,更有單一樣品三醣組成超過五成;其樣品異構物可被鑑定共含有九種二糖、十八種三醣、二十一種四醣及複數之五、六醣結構,且各產品間組成差異性大。由鍵結型態觀察結果得知樣品結構組成多含有β-1→4、β-1→6鍵結,其次為β-1→3,含有β-1→2者種類最少,部分樣品存在β-1→1,可知半乳寡醣轉醣反應中β-galactosidase確實存在鍵結合成之傾向性。總體來說,本研究所發展之兩種分析方式在半乳寡醣組成輪廓之解析上確實能達到同步解析其聚合度、異構物組成和結構判定之目標,可期應用於其他樣品之研究分析甚至作為相關產業生產應用上之品管用途。 | zh_TW |
dc.description.abstract | As a supplement for infant formulae, Galacto-oligosaccharides (GOS) are considered as prebiotic compounds to maintain the proliferation of colonic microflora. GOS are producted by transgalactosylation from lactose with β-galactosidase in food industry, and result in several linkage isomers. In this study, we developed a fast and effective analytical method to solve the complicated isomers of GOS products. First, six commercial GOS products were subjected to degree of polymerization (DP) analysis using High-performance size exclusion chromatography. Then, native (without derivatization) sample and p-aminobenzoic acid ethyl ester (ABEE)-derived sample were analyzed with two HPLC-tandem MS methods: GCC-ESI-MSn and Polyamine II-PAD-ESI-MSn respectively. Experimental results showed the DP of all structures was less then six, while DP2 and DP3 were the major components. In total, 9 different kinds of DP2, 18 of DP3 and 21 of DP4 isomers of GOS have been identified, and the composition between each product were varied. For linkage isomers determination, isomers contained β-1→4 and β-1→6 linkages were the major, ones followed by β-1→3 and then β-1→2 linkages in quantity; β-1→1 was also detected in some of the samples. These results demonstrated the tendency to linkage formation of β-galactosidase in transgalactosylation. Overall, the methods developed in this study are capable of analyzing the isomer components and structure characterization simultaneously. The proposed method of determining GOS products can be used for other relevant samples or for a qulity control measurement in related industries. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:36:48Z (GMT). No. of bitstreams: 1 ntu-105-R02641002-1.pdf: 34534563 bytes, checksum: 9b3cf784c9488cf58c8daced6e838431 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 VII 表目錄 XI 壹、前言 1 貳、文獻回顧 2 I. 寡醣命名 2 1.1聚合度 2 1.2分支度 2 1.3醣苷鍵結 3 1.4母乳寡醣 3 1.5半乳寡醣 5 II. 寡醣分離與結構解析 14 2.1氣相層析法 14 2.2高效能液相層析法 14 2.2.1親水作用液相層析 15 2.2.2逆相層析 15 2.2.3石墨化碳液相層析 16 2.3發色團衍生標記 16 2.4質譜於醣類結構解析之應用 17 2.5多次質譜斷片與寡醣結構解析 19 III. 半乳寡醣之定性及定量檢驗方法 26 3.1美國公定分析化學家協會公告方法 (AOAC 2001.02) 26 3.2氣相層析串聯質譜法 26 3.3液相層析串聯質譜法 26 参、研究目的與架構 31 肆、材料與方法 32 I. 實驗材料 32 1.1實驗藥品 32 1.1.1標準品 32 1.1.2溶劑、試藥 32 1.2儀器設備 33 1.2.1分子篩管柱層析系統 33 1.2.2高效能液相層析儀串聯質譜系統 33 II. 實驗方法 34 2.1總醣測定 34 2.2還原醣測定 34 2.3分子篩管柱層析 34 2.4寡醣標準品製備 34 2.5寡醣樣品製備 35 2.6質譜機台游離化效率之標準化及評估 35 2.7以高效能液相層析串聯質譜儀分析原態寡醣 36 2.7.1探討不同電壓及溫度對於乳糖游離化之影響 36 2.7.2修飾劑 (modifier) 對於乳糖游離化之影響 36 2.7.3游離條件之最佳化 36 2.7.4以多次質譜對寡醣進行斷裂片斷分析 37 2.7.5原態寡醣樣品分析液相層析條件 37 2.7.6線性範圍、偵測極限與檢量線製作 37 2.8以高效能液相層析串聯質譜儀分析寡醣ABEE衍生產物 37 2.8.1探討不同電壓及溫度對於ABEE乳糖游離化之影響 37 2.8.2修飾劑 (modifier) 對於ABEE乳糖游離化之影響 38 2.8.3游離條件之最佳化 38 2.8.4以多次質譜對ABEE乳糖衍生產物進行斷裂片斷分析 38 2.8.5半乳寡醣樣品分析液相層析條件 38 2.8.6線性範圍、偵測極限與檢量線製作 39 2.9市售半乳寡醣之結構特徵分析 39 伍、結果與討論 40 第一章、 市售半乳寡醣GOS樣品之組成輪廓探討 40 1.1 HPSEC對GOS聚合度組成之分析 40 1.2 寡醣鍵結型態與多次質譜斷片之探討 44 1.3 二醣結構異構物組成之解析 54 1.4 三醣結構異構物組成之解析 65 1.5 四醣及以上結構異構物組成之解析 75 1.6 半乳寡醣樣品定量分析 86 陸、結論 94 柒、參考文獻 95 捌、附錄 102 第一章、 分析方法之建立 102 1.1質譜機台游離化效率之標準評估 102 1.1.1評估用標準品Reserpine之離子訊號 102 1.1.2正電模式下電壓對Reserpine於游離化之影響 103 1.1.3正電模式下毛細管溫度調整對Reserpine游離化之影響 103 1.1.4負電模式下電壓對Reserpine於游離化之影響 103 1.1.5負電模式下毛細管溫度調整對Reserpine游離化之影響 104 1.1.6機台游離化效率確校試驗 104 1.2探討影響乳糖游離化效率之因子 113 1.2.1 Lactose之離子訊號 113 1.2.2 修飾劑添加對於乳糖游離化效率之影響 114 1.2.3 正電模式下電壓及溫度對乳糖游離化效率之影響 120 1.2.4 負電模式下電壓及溫度對乳糖游離化效率之影響 120 1.3探討影響ABEE乳糖游離化效率之因子 126 1.3.1 ABEE-Lactose之離子訊號 126 1.3.2 修飾劑添加對ABEE乳糖游離化效率之影響 127 1.3.3 負電模式下電壓及毛細管溫度對ABEE乳糖游離化效率之影響 132 1.4游離條件最佳化設定 135 1.5高效能液相層析之分析條件探討 136 1.5.1原態寡醣之分離效率評估 136 1.5.2ABEE閉環衍生寡醣之分離效率評估 141 1.6以高效能液相層析串聯質譜分析半乳寡醣之方法建立 146 | |
dc.language.iso | zh-TW | |
dc.title | 以高效能液相層析串聯質譜法分析半乳寡醣樣品之組成結構 | zh_TW |
dc.title | Characterization of structures of galacto-oligosaccharides
by high-performance liquid chromatography coupled with mass spectrometry | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國榮,王惠珠,魏國晉,張祐維 | |
dc.subject.keyword | 半乳寡醣,鍵結異構物,發色團衍生標記,液相層析串聯質譜法,多孔石墨化碳管柱, | zh_TW |
dc.subject.keyword | galacto-oligosacchrides,linkage isomers,liquid chromatography, mass spectrometry,graphitized carbon chromatography, | en |
dc.relation.page | 148 | |
dc.identifier.doi | 10.6342/NTU201601600 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-30 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 33.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。