Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 翻譯碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高照明(Zhao-ming Gao)
dc.contributor.authorChan-jun Miaoen
dc.contributor.author繆嬋君zh_TW
dc.date.accessioned2021-06-15T11:49:52Z-
dc.date.available2019-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-11
dc.identifier.citationAllen, J. (2003). Post-editing. Benjamins Translation Library, 35, 297-318.
ALPAC Report (1966). Languages and machines: computers in translation and linguistics. A report by the Automatic Language Processing Advisory Committee, Division of Behavioral Sciences, National Academy of Sciences, National Research Council. (Publication 1416).
Anazawa, R., Ishikawa, H., Park, M. J., & Kiuchi, T. (2013). Online machine translation use with nursing literature: evaluation method and usability. Computers Informatics Nursing, 31(2), 59-65.
Arnold, D, L. Balkan, R. Lee Humphreys, S. Meijer, & L. Sadler (1994). Machine Translation - An Introductory Guide, Manchester & Oxford: NCC Blackwell.
Austermühl, Frank (2001). Electronic Tools for Translators, Manchester: St. Jerome Pub. Co.
Baker, M. (1993). Corpus linguistics and translation studies: Implications and applications. Text and Technology: In Honour of John Sinclair, 233, 250.
Baker, M. (1996). Corpus-based translation studies. Terminology, LSP and Translation Benjamins Translation Library Studies in Language Engineering in Honour of Juan C. Sager, 175.
Banerjee, P., Naskar, S. K., Roturier, J., Way, A., & van Genabith, J. (2012). Domain adaptation in SMT of user-generated forum content guided by OOV word reduction: Normalization and/or supplementary data. In Proceedings of the 16th Annual Meeting of the European Association for Machine Translation, Trento, Italy (pp. 169-176).
Bar-Hillel, Y. (1960). The present status of automatic translation of languages. Advances in Computers, 1(1), 91-163.
Bartning, Inge, Maisa Martin, and Ineke Vedder (2010). Communicative Proficiency and Linguistic Development: Intersections between SLA and Language Testing Research. Place of Publication Not Identified: European Second Language Association.
Bassnett, S. (2002). Lens organelle degradation. Experimental Eye Research, 74(1), 1-6.
Bassnett, S., & Lefevere, A. (1992). Translation/history/culure: A sourcebook. New York, and London: Routledge.
Bernth, A., & Gdaniec, C. (2001). MTranslatability. Machine Translation, 16(3), 175-218.
Blum-Kulka, S. (1986). Shifts of cohesion and coherence in translation. Interlingual and Intercultural Communication: Discourse and Cognition in Translation and Second Language Acquisition Studies.
Blum-Kulka, S., & Levenston, E. A. (1983). Universals of lexical simplification. Strategies in Interlanguage Communication.
Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D., ... & Roossin, P. S. (1990). A statistical approach to machine translation. Computational Linguistics, 16(2), 79-85.
Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., & Mercer, R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19(2), 263-311.
Cain, K., & Nash, H. M. (2011). The influence of connectives on young readers' processing and comprehension of text. Journal of Educational Psychology, 103(2), 429-441.
Cain, K., Patson, N., & Andrews, L. (2005). Age-and ability-related differences in young readers' use of conjunctions. Journal of Child Language, 32(04), 877-892.
Li, C. N., & Thompson, S. A. (1989). Mandarin Chinese: A functional reference grammar. Univ of California Press.
Charney, D., & Longo, B. (1994, May 1). The role of metadiscourse in persuasion. Technical Communication.
Chesterman, A. (2004). Beyond the particular. Translation Universals: Do They Exist, 33, 49.
Costa-Jussà, M. R., & Farrús, M. (2014). Statistical machine translation enhancements through linguistic levels: A survey. ACM Computing Surveys (CSUR), 46(3), 42.
Crossley, S. A., Greenfield, J., & Mcnamara, D. S. (2008). Assessing Text Readability Using Cognitively Based Indices. TESOL Quarterly, 42(3), 475-493.
Crossley, S., Salsbury, T., & McNamara, D. (2009). Measuring L2 lexical growth using hypernymic relationships. Language Learning, 59(2), 307-334.
Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32(3), 221-233.
Frawley, W. (Ed.). (1984). Translation: Literary, linguistic, and philosophical perspectives. Newark: University of Delaware Press; London: Associated University Presses.
Ge, L. (n.d.). Investigating the Relationship between L2 Writing Proficiency and Noun Modifications.
Gellerstam, M. (1986). Translationese in Swedish novels translated from English. Translation studies in Scandinavia, 88-95.
Gentzler, E. (2001). Contemporary translation theories (Vol. 21). Multilingual Matters.
Genzel, D. (2010, August). Automatically learning source-side reordering rules for large scale machine translation. In Proceedings of the 23rd international conference on computational linguistics (pp. 376-384). Association for Computational Linguistics.
Giménez, Jesús, and Lluís Màrquez. 'A Smorgasbord of Features for Automatic MT Evaluation.' Proceedings of the Third Workshop on Statistical Machine Translation - StatMT '08 (2008).
Google Translate. (n.d.). Retrieved June 16, 2016, from https://en.wikipedia.org/wiki/Google_Translate#Translation_methodology
Gouadec, D. (2007). Translation as a Profession (Vol. 73). John Benjamins Publishing.
Graesser, A. C., McNamara, D. S., & Louwerse, M. M. (2003). What do readers need to learn in order to process coherence relations in narrative and expository text. Rethinking Reading Comprehension, 82-98.
Gross, A. (1992). Limitations of computers as translation tools. Computers in Translation: A Practical Appraisal, 96-130.
Guang-sa, J. I. N. (2009). The Comparable Corpus-Based Chinese-English Translation—A Case Study of City Introduction. Journal of Zhangzhou Normal University (Philosophy and Social Sciences), 3, 28.
Guiraud, P. (1954). Lescaractères statistiques du vocabulaire. Presses universitaires de France.
Halliday, M. k., & Hasan, R.(1976). Cohesion in English. London: Longman.
Han, B., & Baldwin, T. (2011, June). Lexical normalisation of short text messages: Makn sens a# twitter. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1 (pp. 368-378). Association for Computational Linguistics.
Hogg, R. V., & Tanis, E. A. (1977). Probability and statistical inference. New York: Macmillan.
Hu, X., Xiao, R., & Hardie, A. How do English translations differ from non-translated English writings? A multi-feature statistical model for linguistic variation analysis. Corpus Linguistics and Linguistic Theory.
Huang, C. R., & Shi, D. (Eds.). (2016). A reference grammar of Chinese. Cambridge University Press.
Hutchins, J. (2003). ALPAC: the (in) famous report. Readings in Machine Translation, 14, 131-135.
Hutchins, J. (2005). The first public demonstration of machine translation: the Georgetown-IBM system, 7th January 1954. Publicación Electrónica En: http://www. hutchinsweb. me. uk/GUIBM-2005.
Hutchins, W. J. (Ed.). (2000). Early years in machine translation: memoirs and biographies of pioneers (Vol. 97). John Benjamins Publishing.
Johnson, W. (1939). Language and Speech Hygiene: An Application of General Semantics. Institute of General Semantics.
Johnson, W. (1944). I. A program of research. Psychological Monographs, 56(2), 1.
Kincaid, J. P., Fishburne, R. P., Rogers, R. L. & Chissom, B. S. (1975). Derivation of new readability formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy enlisted personnel, Research Branch Report 8-75, Millington, TN: Naval Technical Training, U. S. Naval Air Station, Memphis, TN.
Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge university press.
Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85(5), 363.
Klare, G. R. (1974). Assessing Readability. Reading Research Quarterly, 10(1), 62-102.
Kübler, N. (2003). Corpora and LSP translation. Corpora in Translator Education, 25-42.
Kuhn, T. (2014). A survey and classification of controlled natural languages. Computational Linguistics, 40(1), 121-170.
Landauer, T. K. (2007). Handbook of latent semantic analysis. Mahwah, NJ: Lawrence Erlbaum Associates.
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211.
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2-3), 259-284.
Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). (2013). Handbook of Latent Semantic Analysis. Psychology Press.
Laviosa-Braithwaite, S. (1998). Universals of translation. Routledge Encyclopedia of Translation Studies, 288-291.
Laviosa, S. (1998). The corpus-based approach: A new paradigm in translation studies. Meta: Journal Des TraducteursMeta:/Translators' Journal, 43(4), 474-479.
Laviosa, S. (2002). Corpus-based translation studies: theory, findings, applications (Vol. 17). Rodopi.
Vesna, Bulatović (2013). Legal Language: The passive voice myth. EPS Today Journal, 93-112.
Li, H., Graesser, A. C., & Cai, Z. (2014, May). Comparison of Google translation with human translation. In the Twenty-Seventh International Flairs Conference.
Li, J. J., Carpuat, M., & Nenkova, A. (2014). Assessing the Discourse Factors that Influence the Quality of Machine Translation. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
Li, Y., Wang, R., & Zhai, H. (2015). A Machine Learning Method to Distinguish Machine Translation from Human Translation.
Lionbridge. (2006). When to Use Machine Translation and what business goals can be achieved: Lionbridge Technologies, Inc.
Lopez, A. (2008). Statistical machine translation. ACM Computing Surveys (CSUR), 40(3), 8.
Lumeras, M. A. (2010). How to Become a Patent Translator: Tricks and Tips – Notions of Text Genre and Ceremony to the Rescue. Meta Meta: Journal Des Traducteurs, 55(2), 212.
Martin, J. H., & Jurafsky, D. (2000). Speech and language processing. International Edition.
Mass, H. D. (1972). Über den Zusammenhang zwischen Wortschatzumfang und Länge eines Textes. Zeitschrift für Literaturwissenschaft und Linguistik, 2(8), 73.
May, R. (1997). Sensible elocution: How translation works in & upon punctuation. The Translator, 3(1), 1-20.
McCarthy, P. M., & Jarvis, S. (2007). vocd: A theoretical and empirical evaluation. Language Testing, 24(4), 459-488.
Mccarthy, Philip M., and Scott Jarvis. 'MTLD, Vocd-D, and HD-D: A Validation Study of Sophisticated Approaches to Lexical Diversity Assessment.' Behavior Research Methods 42.2 (2010): 381-92.
McEnery, T., & Hardie, A. (2012). Corpus linguistics: Method, theory and practice. Cambridge University Press.
McEnery, T., Xiao, R., & Tono, Y. (2006). Corpus-based language studies: An advanced resource book. Taylor & Francis.
Mcnamara, D. S., & Graesser, A. C. (2011). Coh-Metrix. Applied Natural Language Processing Identification, Investigation and Resolution, 188-205.
McNamara, D. S., & Kintsch, W. (1996). Learning from texts: Effects of prior knowledge and text coherence. Discourse Processes, 22(3), 247-288.
McNamara, D. S., Graesser, A. C., McCarthy, P. M., & Cai, Z. (2014). Automated evaluation of text and discourse with Coh-Metrix. New York, NY: Cambridge University Press.
Melby, A. K., & Warner, T. (1995). The possibility of language: a discussion of the nature of language, with implications for human and machine translation (Vol. 14). John Benjamins Publishing.
Metzger, B. M., & Coogan, M. D. (2004). The Oxford guide to people & places of the Bible. Oxford, NY: Oxford University Press.
Mogahed, M. M. (2012). Punctuation Marks Make a Difference in Translation: Practical Examples. 1-16. Retrieved from http://files.eric.ed.gov/fulltext/ED533736.pdf
Ney, H. (1995). On the probabilistic interpretation of neural network classifiers and discriminative training criteria. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(2), 107-119.
O’Brien, S. (2003). Controlling controlled english. an analysis of several controlled language rule sets. Proceedings of EAMT-CLAW, 3, 105-114.
O’Brien, S., & Roturier, J. (2007). How portable are controlled language rules? A comparison of two empirical MT studies. Proceedings of MT Summit XI, 345-352.
Och, F. J., & Ney, H. (2004). The alignment template approach to statistical machine translation. Computational Linguistics, 30(4), 417-449.
Oi, K., Sumita, E., Furuse, O., Iida, H., & Higuchi, T. (1994). Real-time spoken language translation using associative processors. Proceedings of the Fourth Conference on Applied Natural Language Processing.
Olohan, M. (2000). Intercultural faultlines: research models in translation studies I: textual and cognitive aspects.
Olohan, M. (2004). Introducing corpora in translation studies. Routledge.
Olohan, M., & Baker, M. (2000). Reporting THAT in translated English. Evidence for subconscious processes of explicitation?. Across Languages and Cultures, 1(2), 141-158.
Pápai, V. (2004). A universal of translated text?. Translation Universals: Do They Exist?, 48, 143.
Pearson, J. (2003). Using parallel texts in the translator training environment. Corpora in Translator Education, 15, 24.
Pierce, J. R., & Carroll, J. B. (1966). Language and machines: Computers in translation and linguistics.
Pym, P. J. (1990). Pre-editing and the use of simplified writing for MT: an engineer's experience of operating an MT system. Translating and the Computer, 10, 80-96.
Riley, K. (1991). Passive Voice and Rhetorical Role in Scientific Writing. Journal of Technical Writing and Communication, 21(3), 1-1.
Sanders, T. J., & Noordman, L. G. (2000). The Role of Coherence Relations and Their Linguistic Markers in Text Processing. Discourse Processes, 29(1), 37-60.
Scarton, C., & Specia, L. (2015). A Quantitative Analysis of Discourse Phenomena in Machine Translation. Discours Discours.
Seljan, S., Brkić, M., & Kučiš, V. (2011, January). Evaluation of free online machine translations for Croatian-English and English-Croatian language pairs. In Proceedings of the 3rd International Conference on the Future of Information Sciences: INFuture2011-Information Sciences and e-Society (pp. 331-345).
Seretan, V., Bouillon, P., & Gerlach, J. (2014). A Large-Scale Evaluation of Pre-editing Strategies for Improving User-Generated Content Translation.
Shankland, S. (2013). Google Translate now serves 200 million people daily. Retrieved from http://news.cnet.com/8301-1023_3-57585143-93/googletranslate-now-serves-200-million-people-daily/
Shen, E. (2010). Comparison of online machine translation tools. Translation and Localization. Retrieved from http://www.tcworld.info/e-magazine/translation-andlocalization/article/comparison-of-online-machine-translationtools/
Somers, H. (2011). Machine translation: History, development and limitations. The Oxford Handbook of Translation Studies, 427-440.
Sun, C. (2006). Chinese: A linguistic introduction. Cambridge University Press.
Temnikova, I. P. (2011, September). Establishing Implementation Priorities in Aiding Writers of Controlled Crisis Management Texts. In RANLP (pp. 654-659).
Templin, M. (1957). Certain language skills in children: Their development and interrelationships (Monograph Series No. 26). Minneapolis: University of Minnesota, The Institute of Child Welfare.
Toury, G. (1979). Interlanguage and its manifestations in translation. Meta: Journal Des TraducteursMeta:/Translators' Journal, 24(2), 223-231.
Toury, G. (1991). Experimentation in Translation Studies: Achievements, prospects and some pitfalls. Empirical Research in Translation and Intercultural Studies, 45-66.
Toury, G. (2004). Probabilistic explanations in Translation Studies. Claims, Changes and Challenges in Translation Studies Selected Contributions from the EST Congress, Copenhagen 2001 Benjamins Translation Library, 15-25.
Tse, Y. K. (2010). Parataxis and hypotaxis in the Chinese language. International Journal of Arts and Sciences, 3(16), 351-359.
Tymoczko, M. (1998). Computerized Corpora and the Future of Translation Studies. Meta: Journal Des Traducteurs, 43(4), 652.
Van der Meer, J. (2003). The Business Case for Machine Translation. Translating and the Computer, 1-1.
Vanderauwera, R. (1985). Dutch Novels Translated into English: The transformation of a' minority' literature (No. 6).
Vilar, D., Xu, J., d’Haro, L. F., & Ney, H. (2006, May). Error analysis of statistical machine translation output. In Proceedings of LREC (pp. 697-702).
Vinay, J.-P., & Darbelnet, J. (1958/2000). A Methodology for Translation. [An excerpt from Comparative Stylistics of French and English: A Methodology for Translation, trans. and eds. J. C. Sager & M.-J. Hamel, Amsterdam: John Benjamins, 1995, first published in 1958 as Stylistique comparée du français et de l’anglais. Méthode de traduction] In L. Venuti (Ed.), The Translation Studies Reader (pp. 84–93). London: Routledge.
Vogel, R. (2008). Sentence linkers in essays and papers by native vs. non-native writers. Discourse and Interaction, 1(2), 119-126.
Wang, C., Collins, M., & Koehn, P. (2007, June). Chinese Syntactic Reordering for Statistical Machine Translation. In EMNLP-CoNLL (pp. 737-745).
Weaver, W. (1949). The mathematics of communication. Scientific American, 181(1), 11-15.
Wong, D., & Shen, D. (1999). Factors influencing the process of translating. Meta: Journal Des TraducteursMeta:/Translators' Journal, 44(1), 78-100.
Xiao, R. (2015). Source Language Interference in English-to-Chinese Translation. In Yearbook of Corpus Linguistics and Pragmatics 2015 (pp. 139-162).
Xiao, R., & Dai, G. (2014). Lexical and grammatical properties of Translational Chinese: Translation universal hypotheses reevaluated from the Chinese perspective. Corpus Linguistics and Linguistic Theory, 10(1), 11-55.
Xiao, R., & Wei, N. (2014). Translation and contrastive linguistic studies at the interface of English and Chinese: Significance and implications. Corpus Linguistics and Linguistic Theory, 10(1), 1-10.
Xiao, R., & Yue, M. (2009). Using corpora in Translation Studies: The state of the art (pp. 237-262).
Xiao, T., Zhu, J., Yao, S., & Zhang, H. (2011). Document-level consistency verification in machine translation. In Machine Translation Summit (Vol. 13, pp. 131-138).
Zanettin, F. (1998). Bilingual comparable corpora and the training of translators. Meta: Journal Des TraducteursMeta:/Translators' Journal, 43(4), 616-630.
陳愛兵Chen Aibing (2012). 基於語料庫的政論文英譯語言特徵研究. 山東外語教學, 33(1), 102-107.
孫丹萍Sun Danping (2013). 從因果關系連詞使用對比看英漢的形合與意合. 漢文哲學社會科學版, 9 , 204-207.
楊自強Yang Ziqiang (2013). 基於語料庫的對中國英語學習者轉折連接詞的使用狀況的認知分析.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49810-
dc.description.abstract機器翻譯系統憑藉其速度快、成本低、專業術語一致等優勢始終受到推崇,但其譯文品質卻備受爭議,無法與人工譯文相媲美。所以瞭解機器譯文與人工譯文之間的差異就顯得尤為重要。通過比較可以瞭解機器翻譯在哪些方面差強人意,這樣才能為今後更好得改進機器翻譯系統做貢獻。
因此,本研究致力於探討中進英機器翻譯與人工翻譯的差異,找出可以具體反映兩者之間顯著差異的指標, 并提出相關的可行性建議。本研究使用的語料為中譯英可比語料,包涵人工譯文及機器譯文,另外還搜集了英文原文作為參考語料;文類涵蓋合同、專利、政府、文學、法律、科技、財經及環境8大領域。人工譯本與機器譯本首先會經由文本分析工具Coh-Metrix 3.0 進行文本特徵的量化分析,其結果接著由統計工具StatPlus 針對描述性指標、文本凝聚力指標、句構指標、詞彙多樣性指標及可讀性指標進行依次分析,並作t-test檢定;最後通過CLAWS 詞性標記、AntConc、對數似然比計算器等文本分析工具分析結果并總結原因。
研究結果顯示:機器譯本與人工譯本在字數、句長、句構相似性、介系詞片語數、被動語態及可讀性方面均有顯著差異,這與機器翻譯系統對標點的處理,和產出介系詞及介系詞片語的數量具有緊密聯繫;此外,本研究發現機器譯文會視文類的不同而呈現不同的翻譯品質,且文本的詞彙多樣性與文本的凝聚力也有著密切的關係。
zh_TW
dc.description.abstractMachine translation (MT) has been advancing significantly in recent years. It is fast to run, easy to operate, and has become more human-like as techniques improve. However, its quality is still a concern and far from perfect. This research, therefore, employs a corpus-based approach, aiming to compare human and machine Chinese-to-English translations statistically at a deep and comprehensive textual level, including the aspects of lexical diversity, syntax, cohesion, etc., in order to identify which textual features can significantly indicate the differences between the human corpus and machine corpus, and to figure out possible explanations that might contribute to the improvement of MT output in the future. Such multilevel comparisons not only enable us to find out shortcomings of MT in detail, but also offer us insights on how to improve MT systems. Coh-Metrix 3.0, an automated text analysis tool, plays a major role in generating textual features for the four corpora that comprise an original Chinese corpus, a human corpus, a machine corpus, and a reference corpus, covering 8 domains, namely, contracts, patents, governments, literature, law, finance, environment, as well as science and technology. Results obtained from Coh-Metrix 3.0 are compared using t-tests in StatPlus, as well as further processed and analyzed by CLAWS Part-of-speech Tagger, AntConc and Log-likelihood Calculator. The research findings show human and machine translations are significantly different from each other with respect to basic textual features, readability and syntax; long and nonsense sentences can be commonly seen in machine translations because machine translation systems are not able to insert punctuation marks into sentences based on semantics; prepositions or prepositional phrases mainly account for an unexpected result that human translations contain significantly more words than machine translations; the performance of machine translation systems varies in accordance with text type; besides, lexical diversity was found to be associated with textual cohesion. This thesis will elaborate on the findings and further provide feasible suggestions for future research.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:49:52Z (GMT). No. of bitstreams: 1
ntu-105-R03147013-1.pdf: 2932737 bytes, checksum: 440922ac0cf2a66607fc11df78d2fc3e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1. Introduction 1
1.1 Research Background and its Significance 1
1.2 Research Aim and Research Questions 3
1.3 Organization of the Research 4
2. Literature Review 5
2.1 Corpus-based Translation Studies 5
2.1.1 Corpora 5
2.1.2 Study of Translation Universals Based on Corpus 7
2.1.2.1 Explicitation 8
2.1.2.2 Simplification 9
2.1.2.3 Normalization 10
2.2 Introduction to Machine Translation 11
2.2.1 Statistical Machine Translation 13
2.2.2 Google Translate 14
2.2.3 Pre-editing and Post-editing 15
2.3 Text Analysis 16
2.3.1 CLAWS Part-of-speech Tagger 16
2.3.2 Coh-Metrix 3.0 16
3. Methodology 25
3.1 Corpora 25
3.2 Instruments 28
3.2.1 Log-likelihood Calculator 29
3.2.2 AntConc 29
3.2.3 StatPlus 31
3.3 Data Analysis 32
3.4 Procedures 33
3.5 Summary 34
4. Data Analysis and Results 35
4.1 Quantitative Differences in Human and Machine Translations 35
4.1.1 Basic Textual Features 37
4.1.2 Lexical Diversity 40
4.1.3 Syntax 41
4.1.4 Cohesion and Coherence 44
4.1.5 Readability 48
4.2 Discussion of the Results 50
4.2.1 Basic Textual Features 50
4.2.2 Lexical Diversity 57
4.2.3 Syntax 58
4.2.4 Cohesion and Coherence 64
4.2.5 Readability 68
5. Conclusions 71
5.1 Major Findings And the Corresponding Implications 71
5.2 Research Limitations 73
5.3 Recommendations for Future Research 74
6. References 75
7. Appendix 89
dc.language.isoen
dc.title機器譯本與人工譯本的差異:基於Coh - Metrix 3.0與詞性標記的定量分析zh_TW
dc.titleDifferences between Human and Machine Translations: A Quantitative Analysis Based on Coh-Metrix 3.0 and CLAWS Taggeren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王世平(Shi-ping Wang),蔡毓芬(Yu-fen Tsai)
dc.subject.keyword中譯英翻譯,Coh-Metrix 3.0,機器翻譯,人工翻譯,可比語料,CLAWS 詞性標記,zh_TW
dc.subject.keywordChinese-to-English translation,Coh-Metrix 3.0,machine translation,human translation,comparable corpora,CLAWS Part-of-speech Tagger,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201602413
dc.rights.note有償授權
dc.date.accepted2016-08-12
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept翻譯碩士學位學程zh_TW
顯示於系所單位:翻譯碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved