Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49657
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭錦樺(Ching-Hua Kuo)
dc.contributor.authorShin-Lun Wuen
dc.contributor.author吳欣倫zh_TW
dc.date.accessioned2021-06-15T11:40:14Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citation1. U.S. Food and Drug Administration, FDA Approved Drug Products : Vfend.
2. Micromedex® 2.0, (electronic version). Truven Health Analytics, Greenwood Village, Colorado, USA. Available at: http://www.micromedexsolutions.com/ (cited: 3/16/2016).
3. Johnson, L. B.; Kauffman, C. A., Voriconazole: a new triazole antifungal agent. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2003, 36 (5), 630-7.
4. Tseng, Y. J., A Retrospective Analysis for the Safety and Effectiveness of Voriconazole in a Medical Center in Taiwan. M.S. thesis, National Taiwan University, Taiwan, 2010.
5. European medicines agency, Reflection paper on non-clinical evaluation of drug induced liver injury (DILI). 2010.
6. Huang, Y. T., Therapeutic Drug Monitoring of Voriconazole in Patients with Invasive Fungal Infections. M.S. thesis, National Taiwan University, Taiwan, 2011.
7. Trifilio, S.; Ortiz, R.; Pennick, G.; Verma, A.; Pi, J.; Stosor, V.; Zembower, T.; Mehta, J., Voriconazole therapeutic drug monitoring in allogeneic hematopoietic stem cell transplant recipients. Bone marrow transplantation 2005, 35 (5), 509-13.
8. Tan, K.; Brayshaw, N.; Tomaszewski, K.; Troke, P.; Wood, N., Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. Journal of clinical pharmacology 2006, 46 (2), 235-43.
9. Okuda, T.; Okuda, A.; Watanabe, N.; Takao, M.; Takayanagi, K., Retrospective serological tests for determining the optimal blood concentration of voriconazole for treating fungal infection. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 2008, 128 (12), 1811-8.
10. Matsumoto, K.; Ikawa, K.; Abematsu, K.; Fukunaga, N.; Nishida, K.; Fukamizu, T.; Shimodozono, Y.; Morikawa, N.; Takeda, Y.; Yamada, K., Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. International journal of antimicrobial agents 2009, 34 (1), 91-4.
11. Ueda, K.; Nannya, Y.; Kumano, K.; Hangaishi, A.; Takahashi, T.; Imai, Y.; Kurokawa, M., Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. International journal of hematology 2009, 89 (5), 592-9.
12. Jin, H.; Wang, T.; Falcione, B. A.; Olsen, K. M.; Chen, K.; Tang, H.; Hui, J.; Zhai, S., Trough concentration of voriconazole and its relationship with efficacy and safety: a systematic review and meta-analysis. The Journal of antimicrobial chemotherapy 2016, 71 (7), 1772-85.
13. Eckhart, A. D.; Beebe, K.; Milburn, M., Metabolomics as a key integrator for 'omic' advancement of personalized medicine and future therapies. Clinical and translational science 2012, 5 (3), 285-8.
14. Cacciatore, S.; Loda, M., Innovation in metabolomics to improve personalized healthcare. Annals of the New York Academy of Sciences 2015, 1346 (1), 57-62.
15. Corona, G.; Rizzolio, F.; Giordano, A.; Toffoli, G., Pharmaco-metabolomics: an emerging 'omics' tool for the personalization of anticancer treatments and identification of new valuable therapeutic targets. Journal of cellular physiology 2012, 227 (7), 2827-31.
16. Everett, J. R., Pharmacometabonomics in humans: a new tool for personalized medicine. Pharmacogenomics 2015, 16 (7), 737-54.
17. Koen, N.; Du Preez, I.; Loots, D. T., Chapter Three - Metabolomics and Personalized Medicine. In Advances in Protein Chemistry and Structural Biology, Rossen, D., Ed. Academic Press: 2016; Vol. Volume 102, pp 53-78.
18. Schnackenberg, L.; Yang, X.; Salminen, Current and emerging biomarkers of hepatotoxicity. Current Biomarker Findings 2012, 43-55.
19. Coen, M., A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology 2010, 278 (3), 326-40.
20. Want, E. J.; Coen, M.; Masson, P.; Keun, H. C.; Pearce, J. T.; Reily, M. D.; Robertson, D. G.; Rohde, C. M.; Holmes, E.; Lindon, J. C.; Plumb, R. S.; Nicholson, J. K., Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids: application to experimental toxicology studies. Analytical chemistry 2010, 82 (12), 5282-9.
21. Kumar, B. S.; Chung, B. C.; Kwon, O. S.; Jung, B. H., Discovery of common urinary biomarkers for hepatotoxicity induced by carbon tetrachloride, acetaminophen and methotrexate by mass spectrometry-based metabolomics. Journal of applied toxicology : JAT 2012, 32 (7), 505-20.
22. Ha, H. L.; Shin, H. J.; Feitelson, M. A.; Yu, D. Y., Oxidative stress and antioxidants in hepatic pathogenesis. World Journal of Gastroenterology : WJG 2010, 16 (48), 6035-43.
23. Vuppalanchi, R.; Juluri, R.; Bell, L. N.; Ghabril, M.; Kamendulis, L.; Klaunig, J. E.; Saxena, R.; Agarwal, D.; Johnson, M. S.; Chalasani, N., Oxidative stress in chronic liver disease: relationship between peripheral and hepatic measurements. The American journal of the medical sciences 2011, 342 (4), 314-7.
24. Zhu, R.; Wang, Y.; Zhang, L.; Guo, Q., Oxidative stress and liver disease. Hepatology Research 2012, 42 (8), 741-749.
25. Li, S.; Tan, H. Y.; Wang, N.; Zhang, Z. J.; Lao, L.; Wong, C. W.; Feng, Y., The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 2015, 16 (11), 26087-124.
26. Arauz, J.; Ramos-Tovar, E.; Muriel, P., Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Annals of hepatology 2016, 15 (2), 160-73.
27. Videla, L. A., Oxidative stress signaling underlying liver disease and hepatoprotective mechanisms. World Journal of Hepatology 2009, 1 (1), 72-8.
28. Mladenovic, D.; Radosavljevic, T.; Ninkovic, M.; Vucevic, D.; Jesic-Vukicevic, R.; Todorovic, V., Liver antioxidant capacity in the early phase of acute paracetamol-induced liver injury in mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 2009, 47 (4), 866-70.
29. Linares, V.; Alonso, V.; Albina, M. L.; Belles, M.; Sirvent, J. J.; Domingo, J. L.; Sanchez, D. J., Lipid peroxidation and antioxidant status in kidney and liver of rats treated with sulfasalazine. Toxicology 2009, 256 (3), 152-6.
30. Karabulut, A. B.; Gul, M.; Karabulut, E.; Kiran, T. R.; Ocak, S. G.; Otlu, O., Oxidant and antioxidant activity in rabbit livers treated with zoledronic acid. Transplantation proceedings 2010, 42 (9), 3820-2.
31. Pieniazek, A.; Czepas, J.; Piasecka-Zelga, J.; Gwozdzinski, K.; Koceva-Chyla, A., Oxidative stress induced in rat liver by anticancer drugs doxorubicin, paclitaxel and docetaxel. Advances in medical sciences 2013, 58 (1), 104-11.
32. Nair, A. B.; Jacob, S., A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016, 7 (2), 27-31.
33. Wei, T. Y., Development of analytical platforms for the detectin of voriconazole-induced liver injury. M.S. thesis, National Taiwan University, Taiwan, 2014.
34. Xia, J.; Sinelnikov, I. V.; Han, B.; Wishart, D. S., MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res 2015, 43 (W1), W251-7.
35. Neumann, S.; Welling, H.; Bilzer, T.; Thuere, S., Myopathy and alterations in serum 3-methylhistidine in dogs with liver disease. Research in veterinary science 2008, 84 (2), 178-84.
36. Houten, S. M.; Wanders, R. J. A., A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. Journal of Inherited Metabolic Disease 2010, 33 (5), 469-77.
37. Reuter, S. E.; Evans, A. M., Carnitine and Acylcarnitines. Clinical Pharmacokinetics 2012, 51 (9), 553-572.
38. Somchit, N.; Chung, J. H.; Yaacob, A.; Ahmad, Z.; Zakaria, Z. A.; Kadir, A. A., Lack of hepato- and nephrotoxicity induced by antifungal drug voriconazole in laboratory rats. Drug Chem Toxicol 2012, 35 (3), 304-9.
39. Biju, M. P.; Pyroja, S.; Rajeshkumar, N. V.; Paulose, C. S., Hepatic GABAA receptor functional regulation during rat liver cell proliferation. Hepatology Research 2001, 21 (2), 136-146.
40. Young, S. Z.; Bordey, A., GABA’s Control of Stem and Cancer Cell Proliferation in Adult Neural and Peripheral Niches. Physiology 2009, 24 (3), 171-185.
41. Hori, T.; Gardner, L. B.; Chen, F.; Baine, A.-M. T.; Hata, T.; Uemoto, S.; Nguyen, J. H., Liver graft pretreated in vivo or ex vivo by γ-aminobutyric acid receptor regulation. Journal of Surgical Research 2013, 182 (1), 166-175.
42. Hori, T.; Gardner, L. B.; Hata, T.; Chen, F.; Baine, A. M.; Uemoto, S.; Nguyen, J. H., Pretreatment of liver grafts in vivo by gamma-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat. Annals of transplantation 2013, 18, 299-313.
43. Ufnal, M.; Zadlo, A.; Ostaszewski, R., TMAO: A small molecule of great expectations. Nutrition 2015, 31 (11–12), 1317-1323.
44. Bennett, B. J.; de Aguiar Vallim, T. Q.; Wang, Z.; Shih, D. M.; Meng, Y.; Gregory, J.; Allayee, H.; Lee, R.; Graham, M.; Crooke, R.; Edwards, P. A.; Hazen, S. L.; Lusis, A. J., Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell metabolism 2013, 17 (1), 49-60.
45. Wilson, A.; McLean, C.; Kim, R. B., Trimethylamine-N-oxide: a link between the gut microbiome, bile acid metabolism, and atherosclerosis. Current opinion in lipidology 2016, 27 (2), 148-54.
46. Fuller, R. K.; Hoppel, C. L., Elevated plasma carnitine in hepatic cirrhosis. Hepatology (Baltimore, Md.) 1983, 3 (4), 554-8.
47. Amodio, P.; Angeli, P.; Merkel, C.; Menon, F.; Gatta, A., Plasma Carnitine Levels in Liver Cirrhosis: Relationship with Nutritional Status and Liver Damage. In Clinical Chemistry and Laboratory Medicine, 1990; Vol. 28, p 619.
48. Yaligar, J.; Teoh, W. W.; Othman, R.; Verma, S. K.; Phang, B. H.; Lee, S. S.; Wang, W. W.; Toh, H. C.; Gopalan, V.; Sabapathy, K.; Velan, S. S., Longitudinal metabolic imaging of hepatocellular carcinoma in transgenic mouse models identifies acylcarnitine as a potential biomarker for early detection. Scientific Reports 2016, 6.
49. Bhattacharyya, S.; Pence, L.; Beger, R.; Chaudhuri, S.; McCullough, S.; Yan, K.; Simpson, P.; Hennings, L.; Hinson, J.; James, L., Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration. Metabolites 2013, 3 (3), 606-22.
50. Lu, S. C., Glutathione synthesis. Biochimica et biophysica acta 2013, 1830 (5), 3143-53.
51. Newsholme, P.; Procopio, J.; Lima, M. M.; Pithon-Curi, T. C.; Curi, R., Glutamine and glutamate--their central role in cell metabolism and function. Cell biochemistry and function 2003, 21 (1), 1-9.
52. Waters, N. J.; Waterfield, C. J.; Farrant, R. D.; Holmes, E.; Nicholson, J. K., Integrated metabonomic analysis of bromobenzene-induced hepatotoxicity: novel induction of 5-oxoprolinosis. J Proteome Res 2006, 5 (6), 1448-59.
53. Ghauri, F. Y.; McLean, A. E.; Beales, D.; Wilson, I. D.; Nicholson, J. K., Induction of 5-oxoprolinuria in the rat following chronic feeding with N-acetyl 4-aminophenol (paracetamol). Biochemical pharmacology 1993, 46 (5), 953-7.
54. Kyriakides, M.; Maitre, L.; Stamper, B. D.; Mohar, I.; Kavanagh, T. J.; Foster, J.; Wilson, I. D.; Holmes, E.; Nelson, S. D.; Coen, M., Comparative metabonomic analysis of hepatotoxicity induced by acetaminophen and its less toxic meta-isomer. Archives of toxicology 2016.
55. Bando, K.; Kunimatsu, T.; Sakai, J.; Kimura, J.; Funabashi, H.; Seki, T.; Bamba, T.; Fukusaki, E., GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats. Journal of Applied Toxicology 2011, 31 (6), 524-535.
56. Skordi, E.; Yap, I. K. S.; Claus, S. P.; Martin, F.-P. J.; Cloarec, O.; Lindberg, J.; Schuppe-Koistinen, I.; Holmes, E.; Nicholson, J. K., Analysis of Time-Related Metabolic Fluctuations Induced by Ethionine in the Rat. Journal of Proteome Research 2007, 6 (12), 4572-4581.
57. Waters, N. J.; Waterfield, C. J.; Farrant, R. D.; Holmes, E.; Nicholson, J. K., Integrated Metabonomic Analysis of Bromobenzene-Induced Hepatotoxicity:  Novel Induction of 5-Oxoprolinosis. Journal of Proteome Research 2006, 5 (6), 1448-1459.
58. Balkan, J.; Öztezcan, S.; Küçük, M.; Çevikbaş, U.; Koçak-Toker, N.; Uysal, M., The effect of betaine treatment on triglyceride levels and oxidative stress in the liver of ethanol-treated guinea pigs. Experimental and Toxicologic Pathology 2004, 55 (6), 505-509.
59. Koruk, M.; Taysi, S.; Savas, M. C.; Yilmaz, O.; Akcay, F.; Karakok, M., Oxidative stress and enzymatic antioxidant status in patients with nonalcoholic steatohepatitis. Annals of clinical and laboratory science 2004, 34 (1), 57-62.
60. Kwon, D. Y.; Jung, Y. S.; Kim, S. J.; Park, H. K.; Park, J. H.; Kim, Y. C., Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. The Journal of nutrition 2009, 139 (1), 63-8.
61. Oliva, J.; Bardag-Gorce, F.; Tillman, B.; French, S. W., Protective effect of quercetin, EGCG, catechin and betaine against oxidative stress induced by ethanol in vitro. Experimental and Molecular Pathology 2011, 90 (3), 295-299.
62. Moosmann, B.; Behl, C., Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. European journal of biochemistry / FEBS 2000, 267 (18), 5687-92.
63. Tajiri, K.; Shimizu, Y., Branched-chain amino acids in liver diseases. World Journal of Gastroenterology : WJG 2013, 19 (43), 7620-9.
64. Arai, K.; Lee, K.; Berthiaume, F.; Tompkins, R. G.; Yarmush, M. L., Intrahepatic amino acid and glucose metabolism in a D-galactosamine-induced rat liver failure model. Hepatology (Baltimore, Md.) 2001, 34 (2), 360-71.
65. Gonzalez, E.; van Liempd, S.; Conde-Vancells, J.; Gutierrez-de Juan, V.; Perez-Cormenzana, M.; Mayo, R.; Berisa, A.; Alonso, C.; Marquez, C. A.; Barr, J.; Lu, S. C.; Mato, J. M.; Falcon-Perez, J. M., Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. Metabolomics : Official journal of the Metabolomic Society 2012, 8 (6), 997-1011.
66. Sheng, C.; Miao, Z.; Ji, H.; Yao, J.; Wang, W.; Che, X.; Dong, G.; Lu, J.; Guo, W.; Zhang, W., Three-dimensional model of lanosterol 14 alpha-demethylase from Cryptococcus neoformans: active-site characterization and insights into azole binding. Antimicrob Agents Chemother 2009, 53 (8), 3487-95.
67. van der Pas, R.; Hofland, L. J.; Hofland, J.; Taylor, A. E.; Arlt, W.; Steenbergen, J.; van Koetsveld, P. M.; de Herder, W. W.; de Jong, F. H.; Feelders, R. A., Fluconazole inhibits human adrenocortical steroidogenesis in vitro. J Endocrinol 2012, 215 (3), 403-12.
68. Murphy, M. P., How mitochondria produce reactive oxygen species. Biochem J 2009, 417 (1), 1-13.
69. Jaeschke, H.; McGill, M. R.; Ramachandran, A., Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metabolism Reviews 2012, 44 (1), 88-106.
70. Yuan, L.; Kaplowitz, N., Mechanisms of Drug Induced Liver Injury. Clinics in liver disease 2013, 17 (4), 507-18.
71. Chen, M.; Suzuki, A.; Borlak, J.; Andrade, R. J.; Lucena, M. I., Drug-induced liver injury: Interactions between drug properties and host factors. Journal of Hepatology 2015, 63 (2), 503-514.
72. Lo Re, V., 3rd; Carbonari, D. M.; Lewis, J. D.; Forde, K. A.; Goldberg, D. S.; Reddy, K. R.; Haynes, K.; Roy, J. A.; Sha, D.; Marks, A. R.; Schneider, J. L.; Strom, B. L.; Corley, D. A., Oral Azole Antifungal Medications and Risk of Acute Liver Injury, Overall and by Chronic Liver Disease Status. Am J Med 2016, 129 (3), 283-91 e5.
73. Padovani de Souza, M. C.; Dos Santos, A. G.; Moreira Reis, A. M., Adverse Drug Reactions in Patients Receiving Systemic Antifungal Therapy at a High-Complexity Hospital. Journal of clinical pharmacology 2016.
74. Chalasani, N. P.; Hayashi, P. H.; Bonkovsky, H. L.; Navarro, V. J.; Lee, W. M.; Fontana, R. J., ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. The American journal of gastroenterology 2014, 109 (7), 950-66; quiz 967.
75. Fisher, K.; Vuppalanchi, R.; Saxena, R., Drug-Induced Liver Injury. Archives of Pathology & Laboratory Medicine 2015, 139 (7), 876-887.
76. Leise, M. D.; Poterucha, J. J.; Talwalkar, J. A., Drug-induced liver injury. Mayo Clinic proceedings 2014, 89 (1), 95-106.
77. Danan, G.; Benichou, C., Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: Application to drug-induced liver injuries. Journal of Clinical Epidemiology 1993, 46 (11), 1323-1330.
78. Gujral, J. S.; Knight, T. R.; Farhood, A.; Bajt, M. L.; Jaeschke, H., Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicological sciences : an official journal of the Society of Toxicology 2002, 67 (2), 322-8.
79. Hinson, J. A.; Roberts, D. W.; James, L. P., Mechanisms of acetaminophen-induced liver necrosis. Handbook of experimental pharmacology 2010, (196), 369-405.
80. Padda, M. S.; Sanchez, M.; Akhtar, A. J.; Boyer, J. L., Drug-induced cholestasis. Hepatology (Baltimore, Md.) 2011, 53 (4), 1377-87.
81. Kelly, R. S.; Vander Heiden, M. G.; Giovannucci, E.; Mucci, L. A., Metabolomic Biomarkers of Prostate Cancer: Prediction, Diagnosis, Progression, Prognosis, and Recurrence. Cancer Epidemiol Biomarkers Prev 2016, 25 (6), 887-906.
82. Sethi, S.; Brietzke, E., Omics-Based Biomarkers: Application of Metabolomics in Neuropsychiatric Disorders. Int J Neuropsychopharmacol 2016, 19 (3), pyv096.
83. Guasch-Ferre, M.; Hruby, A.; Toledo, E.; Clish, C. B.; Martinez-Gonzalez, M. A.; Salas-Salvado, J.; Hu, F. B., Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes care 2016, 39 (5), 833-46.
84. Kaddurah-Daouk, R.; Weinshilboum, R. M., Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther 2014, 95 (2), 154-67.
85. Naranjo, C. A.; Busto, U.; Sellers, E. M.; Sandor, P.; Ruiz, I.; Roberts, E. A.; Janecek, E.; Domecq, C.; Greenblatt, D. J., A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981, 30 (2), 239-45.
86. Danan, G.; Benichou, C., Causality assessment of adverse reactions to drugs--I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993, 46 (11), 1323-30.
87. Benichou, C.; Danan, G.; Flahault, A., Causality assessment of adverse reactions to drugs--II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J Clin Epidemiol 1993, 46 (11), 1331-6.
88. Andrade, R. J.; Robles, M.; Fernandez-Castaner, A.; Lopez-Ortega, S.; Lopez-Vega, M. C.; Lucena, M. I., Assessment of drug-induced hepatotoxicity in clinical practice: a challenge for gastroenterologists. World Journal of Gastroenterology : WJG 2007, 13 (3), 329-40.
89. Bond, M. R.; Hanover, J. A., A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol 2015, 208 (7), 869-80.
90. Perepelyuk, M.; Terajima, M.; Wang, A. Y.; Georges, P. C.; Janmey, P. A.; Yamauchi, M.; Wells, R. G., Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury. Am J Physiol Gastrointest Liver Physiol 2013, 304 (6), G605-14.
91. Sakabe, K.; Wang, Z.; Hart, G. W., Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 2010, 107 (46), 19915-20.
92. Zhang, S.; Roche, K.; Nasheuer, H. P.; Lowndes, N. F., Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem 2011, 286 (43), 37483-95.
93. Slawson, C.; Zachara, N. E.; Vosseller, K.; Cheung, W. D.; Lane, M. D.; Hart, G. W., Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 2005, 280 (38), 32944-56.
94. Yamauchi, M.; Sricholpech, M., Lysine post-translational modifications of collagen. Essays Biochem 2012, 52, 113-33.
95. Cho, Y. E.; Singh, T. S.; Lee, H. C.; Moon, P. G.; Lee, J. E.; Lee, M. H.; Choi, E. C.; Chen, Y. J.; Kim, S. H.; Baek, M. C., In-depth identification of pathways related to cisplatin-induced hepatotoxicity through an integrative method based on an informatics-assisted label-free protein quantitation and microarray gene expression approach. Mol Cell Proteomics 2012, 11 (1), M111 010884.
96. Mingorance, C.; Rodriguez-Rodriguez, R.; Justo, M. L.; Alvarez de Sotomayor, M.; Herrera, M. D., Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders. Vasc Health Risk Manag 2011, 7, 169-76.
97. Chiang, J. Y., Bile acids: regulation of synthesis. Journal of lipid research 2009, 50 (10), 1955-66.
98. Yamazaki, M.; Miyake, M.; Sato, H.; Masutomi, N.; Tsutsui, N.; Adam, K. P.; Alexander, D. C.; Lawton, K. A.; Milburn, M. V.; Ryals, J. A.; Wulff, J. E.; Guo, L., Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats. Toxicol Appl Pharmacol 2013, 268 (1), 79-89.
99. Buness, A.; Roth, A.; Herrmann, A.; Schmitz, O.; Kamp, H.; Busch, K.; Suter, L., Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity. PLoS One 2014, 9 (5), e97249.
100. Kalhan, S. C.; Guo, L.; Edmison, J.; Dasarathy, S.; McCullough, A. J.; Hanson, R. W.; Milburn, M., Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 2011, 60 (3), 404-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49657-
dc.description.abstractVoriconazole屬三唑類廣效抗黴菌藥品,被應用於侵入性麴菌感染。目前已知可能造成的藥物不良反應包含紅疹,腸胃不適,視毒性及肝毒性。其中肝功能指數上升為常見之不良反應,可能干擾此藥本身及其他併用藥物之代謝,進一步加重肝臟毒性,並導致治療效果不彰、停藥,於危急患者甚至有致命風險。目前研究對於voriconazole引起的肝臟毒性機轉仍未釐清,臨床上亦無可專一性診斷、治療的方式。代謝體學為近年新興之研究領域,藉由廣泛地研究體內小分子代謝物的變化,推測出可能導致不同表現型的機轉及具有潛力的生物指標,以做為發展精準醫學的工具之一。本研究利用本實驗室先前開發之液相層析串聯式質譜儀之藥物肝毒性研究平台,將標的代謝體學應用於研究voriconazole引起之肝臟毒性,共分為兩個部分。
第一部份以C57BL/6品系之小鼠,研究voriconazole引發之肝臟毒性代謝體變化。給藥組 (n = 8) 使用劑量40 mg/ kg之voriconazole以尾靜脈注射重複給藥三次誘發肝臟毒性,控制組 (n = 10) 則未投與藥物。本部分研究同時收集分析血漿與肝臟樣品,以探討造成voriconazole肝臟毒性的機轉,及血中可反映與voriconazole肝臟毒性相關之代謝物。
第二部份以臨床病人血漿檢體,驗證小鼠實驗中推測之voriconazole肝臟毒性機轉。納入研究之病人皆接受voriconazole治療,並依照肝功能指數、電子病歷紀錄及Naranjo scale和RUCAM scale評估,分為肝功能正常之控制組 (n = 89) 以及voriconazole引發之肝臟毒性組 (n = 21)。
研究結果發現,在小鼠模型與臨床病人中皆觀察到與抗氧化相關之代謝物發生變化,許多與體內重要的抗氧化成分glutathione之生合成有關。此外,glutamine與glutamate之比值在voriconazole引發肝臟毒性的組別與控制組相比,都有顯著的降低,顯現出glutamine可能被大量轉換成glutamate,以增加生成glutathione調節氧化壓力。結合兩部分實驗結果,我們推測voriconazole引起的肝臟毒性與氧化壓力的形成有關而造成細胞功能損傷,並影響能量代謝、尿素循環與膽酸合成等。此為第一個應用代謝體方法研究voriconazole於小鼠及臨床病人引發之肝臟毒性機轉的研究。為闡明voriconazole誘發氧化壓力的分子機轉,並探討可用於臨床之生物指標,未來更多的研究將是必要的。
zh_TW
dc.description.abstractVoriconazole (VCZ) is a triazole-antifungal agent with broad spectrum, which has been widely used in invasive Aspergillosis infections. The adverse drug effects associated with VCZ include rash, gastrointestinal uncomfortable, visual disturbance and hepatotoxicity. Abnormality in liver function test (LFT) is common to VCZ-treated patients, and the abnormal liver function might affect drug metabolism involving itself and other co-administrated drugs, further progress the hepatotoxicity, which might lead to treatment-failure, withdrawal, and even death. The mechanism of VCZ-induced hepatotoxicity is unclear, and no specific marker can be used for diagnosis or treatment in clinic. Metabolomics, an emerging filed recently, is viewed as one of the tools to develop precision medicine. Through globally analyzing the alterations of small molecules in the living system, the mechanism leading to different phenotype and potential biomarkers could be proposed. This research applied the targeted metabolomics approach to study VCZ-induced hepatotoxicity by our previously developed analytic platform for hepatotoxicity-detection via liquid chromatography-triple quadrupole mass spectrometry (LC-QqQ MS). The thesis is divided into two parts.
In the first part, the metabolic patterns of VCZ-induced hepatotoxicity in C57BL/6 mice were analyzed. Mice treated with three repeated dose of 40 mg/ kg by tail vein injection to induce hepatotoxicity (VCZ-induced hepatotoxicity group, n = 8) were compared with the mice without treatment (control group, n = 10). Both liver tissue and plasma were collected and analyzed to propose mechanisms associated VCZ-induced hepatotoxicity and the potential markers which could reflect the VCZ-induced hepatotoxicity in plasma.
In the second part, plasma samples collected from clinical patients were analyzed for validation of the proposed mechanism of VCZ-induced hepatotoxicity. All of the recruited patients had received VCZ treatment, and were divided into control group (n = 89) and VCZ-induced hepatotoxicity group (n = 21) by their liver function. VCZ-induced hepatotoxicity was defined by the evaluation of Naranjo scale and RUCAM scale based on the information from electro-medical record.
Results indicated that the metabolites associated with oxidative stress had altered, and most of the altered metabolites were involved in glutathione biosynthesis, which is an important antioxidant in vivo. In addition, the ratios of glutamine and glutamate showed significantly reduction in VCZ-induced hepatotoxicity group compared to control group in both studies, suggested that glutamine might be transformed into glutamate for glutathione biosynthesis. Combining the results from two parts, we proposed that VCZ-induced hepatotoxicity is associated with oxidative stress to cause cell dysfunction, leading to the alterations in energy metabolism, urea cycle, and bile acids metabolism. To our knowledge, this is the first study to apply metabolomics for the investigation of the mechanism of VCZ-induced hepatotoxicity. Future work is required to clarify the specific molecular mechanism of oxidative stress induced by VCZ and investigate the biomarkers for clinical practice.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:40:14Z (GMT). No. of bitstreams: 1
ntu-105-R03423005-1.pdf: 3262068 bytes, checksum: 67a9db3fcbf1e44f536401f56ceb89fb (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 III
中文摘要 V
ABSTRACT VII
CONTENTS IX
Part I
Metabolomics investigation of voriconazole-induced hepatotoxicity in mice
1. INTRODUCTION - 2 -
1.1 Voriconazole and hepatotoxicity - 2 -
1.2 Current methods to detect hepatotoxicity - 3 -
1.3 Metabolomics - 4 -
1.4 Metabolic markers of drug-induced liver injury - 5 -
1.5 Specific aims - 6 -
2. MATERIALS AND METHODS - 7 -
2.1 Materials, chemicals, and instruments - 7 -
2.2 Study design - 8 -
2.3 Sample preparation - 9 -
2.3.1 Plasma sample preparation - 9 -
2.3.2 Liver sample preparation - 9 -
2.4 Biochemistry analysis - 10 -
2.5 Targeted metabolomics analysis for the detection of hepatotoxicity - 10 -
2.5.1 LC instrument:Agilent 1290 UHPLC system - 10 -
2.5.2 Mass instrument:Agilent 6460 triple quadrupole system - 11 -
2.5.3 Target metabolites - 11 -
2.6 Targeted metabolomics analysis for acylcarnitines - 15 -
2.6.1 LC instrument:Agilent 1290 UHPLC system - 15 -
2.6.2 Mass instrument:Agilent 6460 triple quadrupole system - 15 -
2.6.3 Target acylcarnitines - 16 -
2.7 Statistical analysis - 17 -
3. RESULTS - 18 -
3.1 Biochemical measurements and pathology - 18 -
3.2 Metabolomics alteration between voriconazole and control group - 20 -
3.2.1 Multivariate analysis of the targeted metabolomics results - 20 -
3.2.2 Significantly different metabolites in liver and the fold change - 27 -
3.2.3 Analysis of acylcarnitines - 31 -
3.2.4 Pathway analysis - 33 -
3.2.5 Correlation analysis of targeted metabolites in liver samples - 35 -
4. DISCUSSIONS - 37 -
4.1 The different meanings of the metabolomics alteration in liver and plasma - 37 -
4.2 Association between metabolomics alteration and VCZ-induced hepatotoxicity - 37 -
4.2.1 Liver cell damage phenotype - 37 -
4.2.2 Bile acid metabolism - 39 -
4.2.3 Energy production - 40 -
4.2.4 Oxidative stress - 41 -
4.2.5 Metabolites associated with VCZ therapeutic mechanism - 43 -
4.3 Increasing oxidative stress is the potential mechanism of voriconazole-induced hepatotoxicity - 44 -
5. CONCLUSION - 47 -
Part II
Metabolomics investigation of voriconazole-induced hepatotoxicity in patients
1. Introduction - 50 -
1.1 Voriconazole-induced hepatotoxicity and TDM - 50 -
1.2 Types of drug-induced liver injury - 51 -
1.3 Metabolomics studies in drug-induced hepatotoxicity - 52 -
1.4 Aim - 53 -
2. Materials and Methods - 54 -
2.1 Study design - 54 -
2.2 Sample selection and classification - 55 -
2.3 Metabolomics analysis - 56 -
2.3.1 Materials, chemicals, and instruments - 56 -
2.3.2 Targeted metabolomics analysis for plasma samples - 57 -
2.4 Statistical analysis - 57 -
3. Results - 58 -
3.1 Patient characteristics - 58 -
3.2 Metabolomics alterations between different phenotypes - 61 -
3.2.1 Multivariate analysis of the targeted metabolomics results - 61 -
3.2.2 Correlation analysis and fold change - 63 -
3.2.3 Significantly different metabolites and pathway analysis - 67 -
4. Discussions - 70 -
4.1 Metabolic alterations caused by VCZ-induced hepatotoxicity - 70 -
4.1.1 Cell damage in liver - 70 -
4.1.2 Energy production via TCA cycle - 72 -
4.1.3 Bile acid synthesis - 72 -
4.1.4 Oxidative stress - 73 -
4.2 Comparison with the metabolomics observation in mice model - 75 -
4.3 Proposed mechanism associated with VCZ-induced hepatotoxicity - 77 -
4.4 Limitations - 79 -
5. Conclusion - 81 -
REFERENCES - 83 -
dc.language.isoen
dc.title應用代謝體學於研究voriconazole引發之肝臟毒性zh_TW
dc.titleMetabolomics investigation of voriconazole-induced hepatotoxicityen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor王繼娟(Chi-Chuan Wang)
dc.contributor.oralexamcommittee蘇剛毅(Kang-Yi Su),林淑文(Shu-Wen Lin)
dc.subject.keywordvoriconazole,肝毒性,代謝體,LC-MS/MS,氧化壓力,zh_TW
dc.subject.keywordvoriconazole,hepatotoxicity,metabolomics,LC-MS/MS,oxidative stress,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201602517
dc.rights.note有償授權
dc.date.accepted2016-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
3.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved