請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49517
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳青周(Ching-Chow Chen) | |
dc.contributor.author | Ping Luo | en |
dc.contributor.author | 羅平 | zh_TW |
dc.date.accessioned | 2021-06-15T11:32:33Z | - |
dc.date.available | 2016-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-17 | |
dc.identifier.citation | 1. Simons, K. and W.L. Vaz, Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct, 2004. 33: p. 269-95.
2. Konstantinopoulos, P.A., M.V. Karamouzis, and A.G. Papavassiliou, Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov, 2007. 6(7): p. 541-55. 3. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 2000. 1(1): p. 31-39. 4. Endo, A., M. Kuroda, and K. Tanzawa, Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett, 1976. 72: p. 323-326. 5. Kaneko, I., Y. Hazama-Shimada, and A. Endo, Inhibitory effects on lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Eur J Biochem, 1978. 87: p. 313-321. 6. Tsujita, Y., et al., Hypolipidemic effects in dogs of ML-236B, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Atherosclerosis, 1979. 32: p. 307-313. 7. Yamamoto, A., H. Sudo, and A. Endo, Therapeutic effects of ML-236B in primary hypercholesterolemia. Atherosclerosis, 1980. 35: p. 259-266. 8. Endo, A., The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res, 1992. 33: p. 1569-1582. 9. Grundy, S.M., HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med, 1988. 319: p. 24-33. 10. Blankenhorn, D.H., et al., Coronary angiographic changes with lovastatin therapy. The Monitored Atherosclerosis Regression Study (MARS). Ann Intern Med, 1993. 119: p. 969-976. 11. Investigators, M., Effect of simvastatin on coronary atheroma: the Multicentre Anti-Atheroma Study (MAAS). Lancet, 1994. 344: p. 633-638. 12. Furberg, C.D., et al., Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation, 1994. 90: p. 1679-1687. 13. Jukema, J.W., et al., Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation, 1995. 91: p. 2528-2540. 14. Pitt, B., et al., Pravastatin limitation of atherosclerosis in the coronary arteries (PLAC I): reduction in atherosclerosis progression and clinical events. PLAC I investigation. J Am Coll Cardiol, 1995. 26: p. 1133-1139. 15. Salonen, R., et al., Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation, 1995. 92: p. 1758-1764. 16. Waters, D., et al., Effects of monotherapy with an HMG-CoA reductase inhibitor on the progression of coronary atherosclerosis as assessed by serial quantitative arteriography. The Canadian Coronary Atherosclerosis Intervention Trial. Circulation, 1994. 89: p. 959-968. 17. Group, S.S.S.S., Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet, 1994. 344: p. 1383-1389. 18. Pedersen, T.R., et al., Safety and tolerability of cholesterol lowering with simvastatin during 5 years in the Scandinavian Simvastatin Survival Study. Arch Intern Med, 1996. 156: p. 2085-2092. 19. Shepherd, J., et al., Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med, 1995. 333: p. 1301-1307. 20. Sacks, F.M., et al., The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med, 1996. 335: p. 1001-1009. 21. Downs, J.R., et al., Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. Jama, 1998. 279: p. 1615-1622. 22. Group, H.P.S.C., MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet, 2002. 360: p. 7-22. 23. Clendening, J.W., et al., Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci U S A, 2010. 107(34): p. 15051-6. 24. Clendening, J.W., et al., Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci USA, 2010. 107: p. 15051-15056. 25. Clendening, J.W. and L.Z. Penn, Targeting tumor cell metabolism with statins. Oncogene, 2012. 31(48): p. 4967-78. 26. Graaf, M.R., et al., The risk of cancer in users of statins. J Clin Oncol, 2004. 22: p. 2388-2394. 27. Jenny N. Poynter, M.P.H., Stephen B. Gruber, M.D., Ph.D., M.P.H.,, et al., Statin and the risk of colorectal cancer. The New England Journal of Medicine, 2005. 352(21): p. 2184. 28. Cauley, J.A., et al., Statin use and breast cancer: prospective results from the Women's Health Initiative. J Natl Cancer Inst, 2006. 98: p. 700-707. 29. Dale, K.M., et al., Statins and cancer risk: a meta-analysis. Jama, 2006. 295: p. 74-80. 30. Kuoppala, J., A. Lamminpaa, and E. Pukkala, Statins and cancer: a systematic review and meta-analysis. Eur J Cancer, 2008. 44: p. 2122-2132. 31. El-Serag, H.B., et al., Statins are associated with a reduced risk of hepatocellular carcinoma in a large cohort of patients with diabetes. Gastroenterology, 2009. 136: p. 1601-1608. 32. Kwan, M.L., et al., Post-diagnosis statin use and breast cancer recurrence in a prospective cohort study of early stage breast cancer survivors. Breast Cancer Res Treat, 2008. 109: p. 573-579. 33. Ahern, T.P., et al., Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst, 2011. 103(19): p. 1461-8. 34. Wong, W.W., et al., HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia, 2002. 16: p. 508-519. 35. Fritz, G., Targeting the mevalonate pathway for improved anticancer therapy. Curr Cancer Drug Targets, 2009. 9: p. 626-638. 36. Jakobisiak, M. and J. Golab, Statins can modulate effectiveness of antitumor therapeutic modalities. Med Res Rev, 2010. 30: p. 102-135. 37. Sassano, A. and L.C. Platanias, Statins in tumor suppression. Cancer Lett, 2008. 260: p. 11-19. 38. Kawata, S., et al., Effect of pravastatin on survival in patients with advanced hepatocellular carcinoma. A randomized controlled trial. Br J Cancer, 2001. 84: p. 886-891. 39. Alain Thibault, D.S., Anne C. Tompkins, William D. Figg, Michael R. Cooper, Raymond J. Hohl, Jane Trepel, Bertrand Liang, Nicholas Patronas, David J. Venzon, Eddie Reed, and Charles E Myers, Phase I Study of Lovastatin, an Inhibitor of the Mevalonate Pathway, in Patients with Cancer. Clinical Cancer Research, 1996. 2. 40. Garwood, E.R., et al., Fluvastatin reduces proliferation and increases apoptosis in women with high grade breast cancer. Breast Cancer Res Treat, 2010. 119: p. 137-144. 41. Kim, W.S., et al., Phase II study of high-dose lovastatin in patients with advanced gastric adenocarcinoma. Invest New Drugs, 2001. 19: p. 81-83. 42. Graf, H., et al., Chemoembolization combined with pravastatin improves survival in patients with hepatocellular carcinoma. Digestion, 2008. 78: p. 34-38. 43. Lee, J., et al., Simvastatin plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) as first-line chemotherapy in metastatic colorectal patients: a multicenter phase II study. Cancer Chemother Pharmacol, 2009. 64: p. 657-663. 44. Kornblau, S.M., et al., Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study. Blood, 2007. 109: p. 2999-3006. 45. Holstein, S.A., et al., Pharmacodynamic effects of high dose lovastatin in subjects with advanced malignancies. Cancer Chemother Pharmacol, 2006. 57: p. 155-164. 46. Minden, M.D., et al., Lovastatin induced control of blast cell growth in an elderly patient with acute myeloblastic leukemia. Leukemia Lymphoma, 2000. 40: p. 659-662. 47. Rao, S., et al., Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene, 1998. 17: p. 2393-2402. 48. Sivaprasad, U., T. Abbas, and A. Dutta, Differential efficacy of 3-hydroxy-3-methylglutaryl CoA reductase inhibitors on the cell cycle of prostate cancer cells. Molecular Cancer Therapeutics, 2006. 5(9): p. 2310-2316. 49. Song, X., et al., Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression. Biochimica et Biophysica Acta - Molecular Cell Research, 2014. 1843(5): p. 894-901. 50. Horiguchi, A., et al., 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis. Clinical Cancer Research, 2004. 10(24): p. 8648-8655. 51. Denoyelle, C., et al., Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic properties of highly invasive breast cancer cell lines: An in vitro study. Carcinogenesis, 2001. 22(8): p. 1139-1148. 52. Tu, Y.S., et al., Involvement of Chk1-Cdc25A-cyclin A/CDk2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells. European Journal of Pharmacology, 2011. 670(2-3): p. 356-364. 53. Newman, A., et al., Selective inhibition of primary acute myeloid leukaemia cell growth by simvastatin. Leukemia, 1994. 8: p. 2023-2029. 54. Jones, K.D., et al., Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun, 1994. 205: p. 1681-1687. 55. Perez-Sala, D. and F. Mollinedo, Inhibition of isoprenoid biosynthesis induces apoptosis in human promyelocytic HL-60 cells. Biochem Biophys Res Commun, 1994. 199: p. 1209-1215. 56. Gronich, N., et al., Simvastatin induces death of multiple myeloma cell lines. J Investig Med, 2004. 52: p. 335-344. 57. Rao, S., et al., Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(14): p. 7797-7802. 58. Yu, X., et al., BRCA1 overexpression sensitizes cancer cells to lovastatin via regulation of cyclin D1-CDK4-p21WAF1/CIP1 pathway: Analyses using a breast cancer cell line and tumoral xenograft model. International Journal of Oncology, 2008. 33(3): p. 555-563. 59. Matusewicz, L., et al., The effect of statins on cancer cells--review. Tumour Biol, 2015. 36(7): p. 4889-904. 60. Organization, W.H., World Cancer Report 2014. 2014. 61. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 2016. 66(1): p. 7-30. 62. Ponz de Leon, M. and C. Di Gregorio, Pathology of colorectal cancer. Digestive and Liver Disease, 2001. 33(4): p. 372-388. 63. Terzić, J., et al., Inflammation and Colon Cancer. Gastroenterology, 2010. 138(6): p. 2101-2114.e5. 64. Watson, A.J. and P.D. Collins, Colon cancer: a civilization disorder. Dig Dis, 2011. 29(2): p. 222-8. 65. Cunningham, D., et al., Colorectal cancer. Lancet, 2010. 375(9719): p. 1030-47. 66. Lee, I.M., et al., Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet, 2012. 380(9838): p. 219-29. 67. Valtin, H., 'Drink at least eight glasses of water a day.' Really? Is there scientific evidence for '8 x 8'? Am J Physiol Regul Integr Comp Physiol, 2002. 283(5): p. R993-1004. 68. Fedirko, V., et al., Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol, 2011. 22(9): p. 1958-72. 69. Markowitz, S.D. and M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009. 361(25): p. 2449-60. 70. Lengauer, C., K.W. Kinzler, and B. Vogelstein, Genetic instability in colorectal cancers. Nature, 1997. 386(6625): p. 623-7. 71. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8681-6. 72. Nosho, K., et al., Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One, 2008. 3(11): p. e3698. 73. Goss, K.H. and J. Groden, Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol, 2000. 18(9): p. 1967-79. 74. Grady, W.M. and S.D. Markowitz, Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet, 2002. 3: p. 101-28. 75. Grady, W.M., Genomic instability and colon cancer. Cancer Metastasis Rev, 2004. 23(1-2): p. 11-27. 76. Baker, S.J., et al., Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 1990. 249(4971): p. 912-5. 77. Vazquez, A., et al., The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov, 2008. 7(12): p. 979-87. 78. Bos, J.L., et al., Prevalence of ras gene mutations in human colorectal cancers. Nature, 1987. 327(6120): p. 293-297. 79. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54. 80. Rajagopalan, H., et al., Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature, 2002. 418(6901): p. 934. 81. Siena, S., et al., Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst, 2009. 101(19): p. 1308-24. 82. Cha, Y.I. and R.N. DuBois, NSAIDs and cancer prevention: targets downstream of COX-2. Annu Rev Med, 2007. 58: p. 239-52. 83. Xia, D., et al., Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat Med, 2012. 18(2): p. 224-226. 84. Buchanan, F.G., et al., Role of β-arrestin 1 in the metastatic progression of colorectal cancer. Proceedings of the National Academy of Sciences, 2006. 103(5): p. 1492-1497. 85. Camma, C., et al., Preoperative radiotherapy for resectable rectal cancer: A meta-analysis. Jama, 2000. 284(8): p. 1008-15. 86. Chakravarti, A., et al., Long-term follow-up of patients with rectal cancer managed by local excision with and without adjuvant irradiation. Ann Surg, 1999. 230(1): p. 49-54. 87. Goodwin, R.A. and T.R. Asmis, Overview of systemic therapy for colorectal cancer. Clin Colon Rectal Surg, 2009. 22(4): p. 251-6. 88. Ferrara, N., et al., Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov, 2004. 3(5): p. 391-400. 89. McCormack, P.L. and S.J. Keam, Bevacizumab: a review of its use in metastatic colorectal cancer. Drugs, 2008. 68(4): p. 487-506. 90. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7. 91. Anton Aparicio, L.M., et al., Prostate carcinoma and stem cells. Clin Transl Oncol, 2007. 9(2): p. 66-76. 92. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer Res, 2007. 67(3): p. 1030-7. 93. Creighton, C.J., et al., Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A, 2009. 106(33): p. 13820-5. 94. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature, 2007. 445(7123): p. 111-5. 95. Schatton, T., et al., Identification of cells initiating human melanomas. Nature, 2008. 451(7176): p. 345-9. 96. Lin, H. and T. Schagat, Neuroblasts: a model for the asymmetric division of stem cells. Trends in Genetics, 1997. 13(1): p. 33-39. 97. Visvader, J.E., Cells of origin in cancer. Nature, 2011. 469(7330): p. 314-322. 98. Jordan , C.T., M.L. Guzman , and M. Noble Cancer Stem Cells. New England Journal of Medicine, 2006. 355(12): p. 1253-1261. 99. Ricci-Vitiani, L., et al., Colon cancer stem cells. Gut, 2008. 57(4): p. 538-548. 100. Succony, L. and S.M. Janes, Airway stem cells and lung cancer. QJM, 2014. 107(8): p. 607-612. 101. Kondo, T., T. Setoguchi, and T. Taga, Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A, 2004. 101(3): p. 781-6. 102. Ponti, D., et al., Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res, 2005. 65(13): p. 5506-11. 103. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8. 104. Purton, L.E., I.D. Bernstein, and S.J. Collins, All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood, 2000. 95(2): p. 470-7. 105. Ginestier, C., et al., ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007. 1(5): p. 555-67. 106. Jamieson , C.H.M., et al., Granulocyte–Macrophage Progenitors as Candidate Leukemic Stem Cells in Blast-Crisis CML. New England Journal of Medicine, 2004. 351(7): p. 657-667. 107. Abrahamsson, A.E., et al., Glycogen synthase kinase 3β missplicing contributes to leukemia stem cell generation. Proceedings of the National Academy of Sciences, 2009. 106(10): p. 3925-3929. 108. Hill, R. and H. Wu, PTEN, Stem Cells, and Cancer Stem. J Biol Chem, 2009. 284(18): p. 11755-9. 109. Korkaya, H., et al., Regulation of Mammary Stem/Progenitor Cells by PTEN/Akt/β-Catenin Signaling. PLoS Biol, 2009. 7(6): p. e1000121. 110. Zhao, C., et al., Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature, 2009. 458(7239): p. 776-9. 111. Hoey, T., et al., DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell, 2009. 5(2): p. 168-77. 112. Charafe-Jauffret, E., et al., Cancer Stem Cells in Breast: Current Opinion and Future Challenges. Pathobiology : journal of immunopathology, molecular and cellular biology, 2008. 75(2): p. 75-84. 113. Wassarman, K.M., A. Zhang, and G. Storz, Small RNAs in Escherichia coli. Trends Microbiol, 1999. 7(1): p. 37-45. 114. Argaman, L., et al., Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol, 2001. 11(12): p. 941-50. 115. Klein, R.J., Z. Misulovin, and S.R. Eddy, Noncoding RNA genes identified in AT-rich hyperthermophiles. Proc Natl Acad Sci U S A, 2002. 99(11): p. 7542-7. 116. Mattick, J.S., RNA regulation a new genetics. Nature Reviews Genetics, 2004. 5: p. 316-323. 117. Y. Okazaki, M. Furuno, and T. Kasukawa, Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002. 420(6915): p. 563-573. 118. Ezkurdia, I., et al., Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet, 2014. 23(22): p. 5866-78. 119. Uchida, S. and S. Dimmeler, Long noncoding RNAs in cardiovascular diseases. Circ Res, 2015. 116(4): p. 737-50. 120. Zhao, Y., et al., NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res, 2016. 44(D1): p. D203-8. 121. Amaral, P.P. and J.S. Mattick, Noncoding RNA in development. Mamm. Genome, 2008. 19: p. 454-492. 122. Zhao, J., et al., Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 2008. 322(5902): p. 750-6. 123. Ogawa, Y., B.K. Sun, and J.T. Lee, Intersection of the RNA interference and X-inactivation pathways. Science, 2008. 320: p. 1336-1341. 124. Ashe, H.L., et al., Intergenic transcription and transinduction of the human [beta]-globin locus. Genes Dev., 1997. 11: p. 2494-2509. 125. Guenther, M.G., et al., A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007. 130: p. 77-88. 126. Wang, X., Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature, 2008. 454: p. 126-130. 127. He, Y., et al., The antisense transcriptomes of human cells. Science, 2008. 322: p. 1855-1857. 128. Beltran, M., A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev., 2008. 22: p. 756-769. 129. Prensner, J.R. and A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology. Cancer Discov, 2011. 1(5): p. 391-407. 130. Prensner, J.R., et al., Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol, 2011. 29(8): p. 742-9. 131. Gupta, R.A., et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010. 464(7291): p. 1071-1076. 132. Wang, D., et al., Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature, 2011. 474(7351): p. 390-4. 133. Thiery, J.P., et al., Epithelial-Mesenchymal Transitions in Development and Disease. Cell, 2009. 139(5): p. 871-890. 134. Lin, C.W., P.Y. Lin, and P.C. Yang, Noncoding RNAs in Tumor Epithelial-to-Mesenchymal Transition. Stem Cells Int, 2016. 2016: p. 2732705. 135. Grote, P. and B.G. Herrmann, Long noncoding RNAs in organogenesis: Making the difference. Trends in Genetics, 2015. 31(6): p. 329-335. 136. Dey, B.K., A.C. Mueller, and A. Dutta, Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription, 2014. 5(4). 137. Li, C.H. and Y. Chen, Targeting long non-coding RNAs in cancers: Progress and prospects. International Journal of Biochemistry and Cell Biology, 2013. 45(8): p. 1895-1910. 138. Li, T., et al., Upregulation of long noncoding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma. Oncogene, 2015. 139. Shi, X., et al., Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Letters, 2013. 339(2): p. 159-166. 140. Fan, Y., et al., TGF-b-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clinical Cancer Research, 2014. 20(6): p. 1531-1541. 141. Hirata, H., et al., Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Research, 2015. 75(7): p. 1322-1331. 142. Schmidt, L.H., et al., The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol, 2011. 6(12): p. 1984-92. 143. Rinn, J.L., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007. 129: p. 1311-1323. 144. Zhao, J., et al., Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 2008. 322: p. 750-756. 145. Pandey, R.R., Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell, 2008. 32: p. 232-246. 146. Feng, J., The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev., 2006. 20: p. 1470-1484. 147. Mercer, T.R., M.E. Dinger, and J.S. Mattick, Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 2009. 10(3): p. 155-159. 148. Caruso, M.G. and M. Notarnicola, Biochemical changes of mevalonate pathway in human colorectal cancer. Anticancer Res, 2005. 25(5): p. 3393-7. 149. Poynter, J.N., et al., Statins and the risk of colorectal cancer. N Engl J Med, 2005. 352: p. 2184-2192. 150. Liu, T., et al., Increased expression of the long noncoding RNA CRNDE-h indicates a poor prognosis in colorectal cancer, and is positively correlated with IRX5 mRNA expression. Onco Targets Ther, 2016. 9: p. 1437-48. 151. Lennox, K.A. and M.A. Behlke, Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Research, 2015. 152. Ellis, B.C., P.L. Molloy, and L.D. Graham, CRNDE: A Long Non-Coding RNA Involved in CanceR, Neurobiology, and DEvelopment. Front Genet, 2012. 3: p. 270. 153. Xiao, H., et al., Combination of atorvastatin and celecoxib synergistically induces cell cycle arrest and apoptosis in colon cancer cells. Int J Cancer, 2008. 122(9): p. 2115-24. 154. Eaden, J.A., K.R. Abrams, and J.F. Mayberry, The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 2001. 48(4): p. 526-35. 155. Grivennikov, S.I., Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol, 2013. 35(2): p. 229-44. 156. Lao, V.V. and W.M. Grady, Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol, 2011. 8(12): p. 686-700. 157. Djeu, J.Y. and S. Wei, Clusterin and chemoresistance. Adv Cancer Res, 2009. 105: p. 77-92. 158. Andersen, C.L., et al., Clusterin Expression in Normal Mucosa and Colorectal Cancer. Molecular & Cellular Proteomics, 2007. 6(6): p. 1039-1048. 159. Bonnard, C., et al., Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1. Nat Genet, 2012. 44(6): p. 709-713. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49517 | - |
dc.description.abstract | HMGCR (3-Hydroxy-3-methyl-glutaryl-CoA reductase, HMGCR)是合成膽固醇的速率決定酵素,將 HMG-CoA轉換成mevalonate,因此膽固醇生合成路徑也稱為mevalonate pathway;活化mevalonate pathway會促進GTPase farnesylation,加速細胞之生長與癌化;臨床上,服用Statins (HMGCR 抑制劑)可減少血中膽固醇濃度,降低心血管與腦血管疾病之發生率。大腸直腸癌(Colorectal Cancer, CRC)為世界發生率第三高之癌症,其患者腫瘤組織之HMGCR活性較正常組織高,服用statins可降低罹患大腸直腸癌之風險,我們使用HMGCR表現較多的HCT116以及HMGCR表現較低的SW480來探討HMGCR在大腸直腸癌的角色。
使用shRNA knockdown或CRISPR knockout HCT116之HMGCR,會增加apoptotic marker (Cleaved caspase-3)之表現,減少pro-survival (Mcl-1)之表現;Overexpress HMGCR至SW480則增加Mcl-1之表現,與發炎相關的COX-2以及引發DNA de novo methylation的DNMT3A之表現亦增加,推論HMGCR是CRC致癌因子之一。 我們以RNA sequencing分析兩組TKI-resistant 細胞,HCC827 vs HCC827/IR和H1975 vs H1975/AR,發現參與調控cell adhesion、tight junction以及提升cell migration能力之蛋白之mRNA有差異,例如cell adhesion相關的E-cadherin與Occludin之表現量在HCC827/IR和H1975/AR較少;另外,我們分析lncRNAs表現之差異,發現兩個lncRNAs:CLU及CRNDE高度表現在HCC827/IR和H1975/AR細胞,主要分布在核內,使用DNA gapmers knockdown CLU與CRNDE,探討其在TKI-resistance的角色。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:32:33Z (GMT). No. of bitstreams: 1 ntu-105-R03443014-1.pdf: 8702664 bytes, checksum: afaaa46e06ef4d4dc52a5aa221b8b651 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 縮寫表…………………………………………………………………………………2
中文摘要………………………………………………………………………………5 英文摘要………………………………………………………………………………6 第一章 緒論……………………………………………………………………….…..7 第一節 Hydroxymethylglutaryl coenzyme A reductase (HMGCR)……8 第二節 大腸直腸癌 (Colorectal cancer)…………..…………………………..16 第三節 Cancer Stem Cell…………..………………………………………….…..25 第四節 Long Non-coding RNA in Cancer………………………………….…….33 第五節 研究動機………………………………………………………………….43 第二章 實驗材料與方法……………………………………………………………44 第三章 結果………………………………………………………………………....53 第四章 討論…………………………………………………………………………67 第五章 結論…………………………………………………………………………70 參考文獻……………………………………………………………………………..72 | |
dc.language.iso | zh-TW | |
dc.title | HMGCR在大腸直腸癌之角色以及lncRNA在肺癌TKI抗藥性之研究 | zh_TW |
dc.title | The role of HMGCR in colorectal cancer and the study of lncRNA in lung cancer TKI-resistance | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳明賢(Ming-Shiang Wu),黃偉謙(Wei-Chien Huang),楊鎧鍵(Kai-Chien Yang) | |
dc.subject.keyword | HMGCR,大腸直腸癌,TKI,tyrosine kinase inhibitor,非小細胞肺癌,lncRNA, | zh_TW |
dc.subject.keyword | HMGCR,Colorectal cancer,TKI,tyrosine kinase inhibitor,non-small cell lung cancer,lncRNA, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU201602990 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 8.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。