Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49380
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張嘉銓(Chia-Chuan Chang)
dc.contributor.authorChi-Heng Wangen
dc.contributor.author王智恆zh_TW
dc.date.accessioned2021-06-15T11:26:04Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation1. Juan, Y.-C.; Chang, C.-C.; Tsai, W.-J.; Lin, Y.-L.; Hsu, Y.-S.; Liu, H.-K. Pharmacological evaluation of insulin mimetic novel suppressors of PEPCK gene transcription from Paeoniae Rubra Radix. J. Ethnopharmacol. 2011, 137 (1), 592–600.
2. Zhang, J.; Li, L.; Kim, S.-H.; Hagerman, A. E.; Lü, J. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm. Res. 2009, 26 (9), 2066.
3. Baumgartner, R. R.; Steinmann, D.; Heiss, E. H.; Atanasov, A. G.; Ganzera, M.; Stuppner, H.; Dirsch, V. M. Bioactivity-guided isolation of 1,2,3,4,6-penta-o-galloyl-d-glucopyranose from Paeonia lactiflora roots as a PTP1B inhibitor. J. Nat. Prod. 2010, 73 (9), 1578–1581.
4. Liu, D-F; Wei, W; Song, L-H. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine. 2007, 14 (11), 778–784.
5. Liu, D-F; Wei, W; Song, L-H. Protective effect of paeoniflorin on immunological liver injury induced by bacillus calmette-guerin plus lipopolysaccharide: modulation of tumour necrosis factor-α and interleukin-6 mRNA. Clin. Exp. Pharmacol. Physiol. 2006, 33 (4), 332–339.
6. Jiang, W.-L.; Chen, X.-G.; Zhu, H.-B.; Gao, Y.-B.; Tian, J.-W.; Fu, F.-H. Paeoniflorin inhibits systemic inflammation and improves survival in experimental sepsis. Basic Clin. Pharmacol. Toxicol. 2009, 105 (1), 64–71.
7. Ogawa, K.; Nakamura, S.; Sugimoto, S.; Tsukioka, J.; Hinomaru, F.; Nakashima, S.; Matsumoto, T.; Ohta, T.; Fujimoto, K.; Yoshikawa, M.; Matsuda, H. Constituents of flowers of Paeoniaceae plants, Paeonia suffruticosa and Paeonia lactiflora. Phytochem. Lett. 2015, 12, 98–104.
8. Song, W.-H.; Cheng, Z.-H.; Chen, D.-F. Anticomplement monoterpenoid glucosides from the root bark of Paeonia suffruticosa. J. Nat. Prod. 2014, 77 (1), 42–48.
9. Lin, H.-C.; Ding, H.-Y.; Wu, T.-S.; Wu, P.-L. Monoterpene glycosides from Paeonia suffruticosa. Phytochemistry. 1996, 41 (1), 237–242.
10. Okasaka, M.; Kashiwada, Y.; Kodzhimatov, O. K.; Ashurmetov, O.; Takaishi, Y. Monoterpene glycosides from Paeonia hybrida. Phytochemistry. 2008, 69 (8), 1767–1772.
11. Matsuda, H.; Ohta, T.; Kawaguchi, A.; Yoshikawa, M. Bioactive constituents of chinese natural medicines. Vi. Moutan cortex. (2): structures and radical scavenging effects of suffruticosides A, B, C, D, and E and Galloyl-oxypaeoniflorin. Chem. Pharm. Bull. (Tokyo) 2001, 49 (1), 69–72.
12. Duan, W.-J.; Yang, J.-Y.; Chen, L.-X.; Zhang, L.-J.; Jiang, Z.-H.; Cai, X.-D.; Zhang, X.; Qiu, F. Monoterpenes from Paeonia albiflora and their inhibitory activity on nitric oxide production by lipopolysaccharide-activated microglia. J. Nat. Prod. 2009, 72 (9), 1579–1584.
13. Washida, K.; Yamagaki, T.; Iwashita, T.; Nomoto, K. Two new galloylated monoterpene glycosides, 4-o-galloylalbiflorin and 4'-o-galloylpaeoniflorin, from the roots of paeonia lactiflora (paeoniae radix) grown and processed in nara prefecture, Japan. Chem. Pharm. Bull. 2009, 57 (10), 1150–1152.
14. Ding, L.; Jiang, Z.; Liu, Y.; Chen, L.; Zhao, Q.; Yao, X.; Zhao, F.; Qiu, F. Monoterpenoid inhibitors of NO production from Paeonia suffruticosa. Fitoterapia. 2012, 83 (8), 1598–1603.
15. Shi, Y.-H.; Zhu, S.; Ge, Y.-W.; He, Y.-M.; Kazuma, K.; Wang, Z.; Yoshimatsu, K.; Komatsu, K. Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora. Fitoterapia. 2016, 108, 55–61.
16. He, C.; Zhang, Y.; Peng, Y.; Yang, J.; Xiao, P. Monoterpene glycosides from the seeds of Paeonia suffruticosa protect HEK 293 cells from irradiation-induced DNA damage. Phytochem. Lett. 2012, 5 (1), 128–133.
17. Brraca, A.; Kiem, P. V.; Yen, P. H.; Nhiem, N. X.; Quang, T. H.; Cuong, N. X.; Minh, C. V. New monoterpene glycosides from Paeonia lactiflora. Fitoterapia. 2008, 79 (2), 117–120.
18. Furuya, R.; Hu, H.; Zhang, Z.; Shigemori, H. Suffruyabiosides A and B, two new monoterpene diglycosides from moutan cortex. Molecules. 2012, 17 (5), 4915–4923.
19. Zhu, X.; Fang, Z.-H. New monoterpene glycosides from the root cortex of Paeonia suffruticosa and their potential anti-inflammatory activity. Nat. Prod. Res. 2014, 28 (5), 301–305.
20. Riaz, N.; Anis, I.; Malik, A.; Ahmed, Z.; Aziz-ur-rehman; Muhammad, P.; Nawaz, S. A.; Choudhary, M. I. Paeonins A and B, lipoxygenase inhibiting monoterpene galactosides from Paeonia emodi. Chem. Pharm. Bull. 2003, 51 (3), 252–254.
21. Riaz, N.; Anis, I.; Malik, A.; Ahmed, Z.; Aziz-ur-rehman; Muhammad, P.; Nawaz, S. A.; Choudhary, M. I. Lipoxygenase inhibiting and antioxidant oligostilbene and monoterpene galactoside from Paeonia emodi. Phytochemistry. 2004, 65 (8), 1129–1135.
22. Zou, L.; Hu, L.-F.; Guo, Y.-D.; Song, Y.; Fu, Q. Lipoxygenase-inhibiting phenolic glycosides and monoterpene glycosides from Paeonia lactiflora. J. Asian Nat. Prod. Res. 2015, 17 (8), 808–812.
23. Hayes, P. Y.; Lehmann, R.; Penman, K.; Kitching, W.; De Voss, J. J. Sodium paeoniflorin sulfonate, a process derived artefact from paeoniflorin. Tetrahedron Lett. 2005, 46 (15), 2615–2618.
24. Zeitschrift fur Naturforschung. New Monoterpene Glycosides from Paeonia emodi. J. Chem. Sci. 54, 544–548 (1999)
25. Kostova, I. N.; Simeonov, M. F.; Todorova, D. I.; Petkova, P. L. Two acylated monoterpene glucosides from Paeonia peregina. Phytochemistry. 1998, 48 (3), 511–514.
26. ang, Y.; Hu, H.-Y.; Yu, N.-J.; Zhang, Y.; Zhao, Y.-M. Three new paeonidanin-type monoterpene glycosides from Paeonia suffruticosa. Helv. Chim. Acta. 2010, 93 (8), 1622–1627.
27. Ha, D. T.; Ngoc, T. M.; Lee, I.; Lee, Y. M.; Kim, J. S.; Jung, H.; Lee, S.; Na, M.; Bae, K. Inhibitors of aldose reductase and formation of advanced glycation end-products in moutan cortex (Paeonia suffruticosa). J. Nat. Prod. 2009, 72 (8), 1465–1470.
28. Fu, Q.; Yu, T.; Yuan, H.-M.; Song, Y.; Zou, L. Paeonidanins F–H: Three new dimeric monoterpene glycosides from Paeonia lactiflora and their anti-inflammatory activity. Phytochem. Lett. 2015, 13, 386–389.
29. He, C.; Peng, B.; Dan, Y.; Peng, Y.; Xiao, P. Chemical taxonomy of tree peony species from China based on root cortex metabolic fingerprinting. Phytochemistry. 2014, 107, 69–79.
30. Fu, Q.; Wang, S.-B.; Zhao, S.-H.; Chen, X.-J.; Tu, P.-F. Three new monoterpene glycosides from the roots of Paeonia lactiflora. J. Asian Nat. Prod. Res. 2013, 15 (7), 697–702.
31. Yu, J.; Elix, J. A.; Iskander, M. N. Lactiflorin, a monoterpene glycoside from paeony root. Phytochemistry. 1990, 29 (12), 3859–3863.
32. Yoshikawa, M.; Ohta, T.; Kawaguchi, A.; Matsuda, H. Bioactive constituents of chinese natural medicines. V. Radical scavenging effect of moutan cortex. (1) : absolute stereostructures of two monoterpenes, paeonisuffrone and paeonisuffral. Chem. Pharm. Bull. (Tokyo) 2000, 48 (9), 1327–1331.
33. Yoshikawa, M.; Harada, E.; Minematsu, T.; Muraoka, O.; Yamahara, J.; Murakami, N.; Kitagawa, I. Absolute stereostructures of paeonisothujone, a novel skeletal monoterpene ketone, and deoxypaeonisuffrone, and isopaeonisuffral, two new monoterpenes, from moutan cortex. Chem. Pharm. Bull. (Tokyo) 1994, 42 (3), 736–738.
34. Hayashi, T.; Shinbo, T.; Shimizu, M.; Arisawa, M.; Morita, N.; Kimura, M.; Matsuda, S.; Kikuchi, T. Paeonilactone-A, -B, and -C, new monoterpenoids from paeony root. Tetrahedron Lett. 1985, 26 (31), 3699–3702.
35. Lin, H.-C.; Ding, H.-Y.; Wu, Y.-C. Two novel compounds from Paeonia suffruticosa. J. Nat. Prod. 1998, 61 (3), 343–346.
36. Ji-Kai, L. I. U.; Yun-Bao, M. A.; Da-Gang, W. U.; Yang, L. U.; Zhi-Qiang, S.; Qi-Tai, Z.; Zhi-He, C. Paeonilide, a novel anti-paf-active monoterpenoid-derived metabolite from Paeonia delavayi. Biosci. Biotechnol. Biochem. 2000, 64 (7), 1511–1514.
37. Liang, W.-J.; Geng, C.-A.; Zhang, X.-M.; Chen, H.; Yang, C.-Y.; Rong, G.-Q.; Zhao, Y.; Xu, H.-B.; Wang, H.; Zhou, N.-J.; Ma, Y.-B.; Huang, X.-Y.; Chen, J.-J. (±)-Paeoveitol, a pair of new norditerpene enantiomers from Paeonia veitchii. Org. Lett. 2014, 16 (2), 424–427.
38. Stošić, D.; Gorunović, M.; Skaltsounis, A.-L.; Tillequin, F.; Koch, M. Nouveaux flavonosides de Paeonia tenuifolia L. Helv. Chim. Acta. 1988, 71 (2), 348–353.
39. Mencherini, T.; Picerno, P.; Festa, M.; Russo, P.; Capasso, A.; Aquino, R. Triterpenoid constituents from the roots of Paeonia rockii ssp. J. Nat. Prod. 2011, 74 (10), 2116–2121.
40. Ikuta, A.; Kamiya, K.; Satake, T.; Saiki, Y. Triterpenoids from callus tissue cultures of Paeonia species. Phytochemistry. 1995, 38 (5), 1203–1207.
41. Kamiya, K.; Yoshioka, K.; Saiki, Y.; Ikuta, A.; Satake, T. Triterpenoids and flavonoids from Paeonia lactiflora. Phytochemistry. 1997, 44 (1), 141–144.
42. Wu, S.-H.; Yang, S.-M.; Wu, D.-G.; Cheng, Y.-W.; Peng, Q. Three novel 24,30-dinortriterpenoids, paeonenoides A–C, from Paeonia veitchii. Helv. Chim. Acta. 2005, 88 (2), 259–265.
43. Fu, Q.; Qiu, L.; Yuan, H.-M.; Yu, T.; Zou, L. Paeonenoides D and E: two new nortriterpenoids from paeonia lactiflora and their inhibitory activities on No production. Helv. Chim. Acta. 2016, 99 (1), 46–49.
44. Tantry, M. A.; Dar, J. A.; Khuroo, M. A.; Shawl, A. S. Nortriterpenoids from the roots of Paeonia emodi. Phytochem. Lett. 2012, 5 (2), 253–257.
45. Wu, S.-H.; Chen, Y.-W.; Li, Z.-Y.; Yang, L.-Y.; Li, S.-L. Chemical constituents from the root bark of Paeonia delavayi. Chem. Nat. Compd. 2009, 45 (4), 597–598.
46. Ha, D. T.; Tuan, D. T.; Thu, N. B.; Nhiem, N. X.; Ngoc, T. M.; Yim, N.; Bae, K. Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 Cells. Bioorg. Med. Chem. Lett. 2009, 19 (19), 5556–5559.
47. Nawaz, H. R.; Malik, A.; Khan, P. M.; Shujaat, S.; Rahman, A. A Novel β-Glucuronidase Inhibiting Triterpenoid from Paeonia emodi. Chem. Pharm. Bull. (Tokyo) 2000, 48 (11), 1771–1773.
48. Ding, H.-Y.; Wu, Y.-C.; Lin, H.-C.; Chan, Y.-Y.; Wu, P.-L.; Wu, T.-S. Glycosides from Paeonia suffruticosa. Chem. Pharm. Bull. (Tokyo) 1999, 47 (5), 652–655.
49. Wu, S.-H.; Chen, Y.-W.; Yang, L.-Y.; Li, S.-L.; Li, Z.-Y. A new ellagic acid glycoside from Paeonia delavayi. Fitoterapia. 2008, 79 (6), 474–475.
50. Guo, D.; Ye, G.; Guo, H. A new phenolic glycoside from Paeonia lactiflora. Fitoterapia. 2006, 77 (7–8), 613–614.
51. Yoo, M.; Lee, B.; Choi, Y.; Lee, J.; Seo, J.; Oh, K.-S.; Koo, H.-N.; Seo, H.; Yon, G.; Kwon, D.; Kim, Y.; Ryu, S. Vasorelaxant effect of the rootbark extract of Paeonia moutan on isolated rat thoracic aorta. Planta Med. 2006, 72 (14), 1338–1341.
52. Chen, S.-D.; Wang, D.-M.; Lu, C.-J.; Zhao, R.-Z. Two new γ-pyrone glucosides from Paeonia albiflora. J. Asian Nat. Prod. Res. 2016, 18 (2), 153–158.
53. He, C.-N.; Peng, Y.; Xu, L.-J.; Liu, Z.-A.; Gu, J.; Zhong, A.-G.; Xiao, P.-G. Three new oligostilbenes from the seeds of Paeonia suffruticosa. Chem. Pharm. Bull. (Tokyo) 2010, 58 (6), 843–847.
54. Sarker, S. D.; Whiting, P.; Dinan, L.; Šik, V.; Rees, H. H. Identification and ecdysteroid antagonist activity of three resveratrol trimers (suffruticosols A, B and C) from Paeonia suffruticosa. Tetrahedron. 1999, 55 (2), 513–524.
55. Kim, H. J.; Chang, E. J.; Cho, S. H.; Chung, S. K.; Park, H. D.; Choi, S. W. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci. Biotechnol. Biochem. 2002, 66 (9), 1990–1993.
56. Liu, P.; Wang, Y.; Gao, J.; Lu, Z.; Yin, W.; Deng, R. Resveratrol trimers from seed cake of Paeonia rockii. Molecules. 2014, 19 (12), 19549–19556.
57. Asai, T.; Otsuki, S.; Sakurai, H.; Yamashita, K.; Ozeki, T.; Oshima, Y. Benzophenones from an Endophytic Fungus, Graphiopsis chlorocephala, from Paeonia lactiflora cultivated in the presence of an NAD+-Dependent HDAC inhibitor. Org. Lett. 2013, 15 (8), 2058–2061.
58. Liu, X.; Yang, M.; Wang, X.; Xie, S.; Li, Z.; Kim, D.; Park, J.; Kong, L. Lignans from the root of Paeonia lactiflora and their anti-β-amyloid aggregation activities. Fitoterapia. 2015, 103, 136–142.
59. Tanaka, T.; Fukumori, M.; Ochi, T.; Kouno, I. Paeonianins A−E, new dimeric and monomeric ellagitannins from the fruits of Paeonia lactiflora. J. Nat. Prod. 2003, 66 (6), 759–763.
60. Tanaka, T.; Kataoka, M.; Tsuboi, N.; Kouno, I. New monoterpene glycoside esters and phenolic constituents of paeoniae radix, and increase of water solubility of proanthocyanidins in the presence of paeoniflorin. Chem. Pharm. Bull. (Tokyo) 2000, 48 (2), 201–207.
61. Kalinkina, G. I.; Dembitskii, A. D.; Bergaliev, E. S.; Zarubina, L. A. An investigation of the essential oil of the roots of Paeonia anomala. Chem. Nat. Compd. 1993, 29 (6), 811–811.
62. Kim, H.-K.; Tak, J.-H.; Ahn, Y.-J. Acaricidal activity of Paeonia suffruticosa root bark-derived compounds against dermatophagoides farinae and dermatophagoides pteronyssinus (Acari:  Pyroglyphidae). J. Agric. Food Chem. 2004, 52 (26), 7857–7861.
63. Lin, H.-C.; Ding, H.-Y.; Ko, F.-N.; Teng, C.-M.; Wu, Y.-C. Aggregation inhibitory activity of minor acetophenones from paeonia species. Planta Med. 1999, 65 (7), 595–599.
64. Okubo, T.; Nagai, F.; Seto, T.; Satoh, K.; Ushiyama, K.; Kano, I. Biol. The inhibition of phenylhydroquinone-induced oxidative DNA cleavage by constituents of moutan cortex and paeoniae radix. Biol. Pharm. Bull. 2000, 23 (2), 199–203.
65. Xu, H.; Zhang, N.; Casida, J. E. Insecticides in chinese medicinal plants:  survey leading to jacaranone, a neurotoxicant and glutathione-reactive quinol. J. Agric. Food Chem. 2003, 51 (9), 2544–2547.
66. Sun, W.-H.; Chang, C.-C.; Liu, H.-K. A study of anti-diabetic effects of a chemically defined extract from Paeoniae Rubra Radix. 2013.
67. Hayes, P. Y.; Lehmann, R.; Penman, K.; Kitching, W.; De Voss, J. Sodium paeoniflorin sulfonate, a process derived artefact from paeoniflorin. Tetrahedron Lett. 2005, 46 (15), 2615–2618.
68. Kaneda, M.; Iitaka, Y.; Shibata, S. Chemical studies on the oriental plant drugs. xXXIII. the absolute structures of paeoniflorin, albiflorin, oxypaeoniflorin and benzoylpaeoniflorin isolated from Chinese paeony root. Tetrahedron. 1972.
69. Cheng, Y.; Peng, C.; Zhang, H.; Liu, X. Structural characterization of an artefact and simultaneous quantification of two monoterpenes and their artefacts of isolation in white-peony root. Helv. Chim. Acta. 2010, 93 (3), 565–572.
70. Nguyen, P.-H.; Zhao, B. T.; Lee, J. H.; Kim, Y. H.; Min, B. S.; Woo, M. H. Antithrombotic phenolics from the stems of parthenocissus tricuspidata possess anti-inflammatory effect. Bull. Korean Chem. Soc. 2014, 35 (6), 1763–1768
71. Lavoie, S.; Ouellet, M.; Fleury, P.-Y.; Gauthier, C.; Legault, J.; Pichette, A. Complete 1H and 13C NMR assignments of a series of pergalloylated tannins. Magn. Reson. Chem. 54, 168–174 (2016).
72. Liu, C. T.; Neverov, A. A.; Brown, R. S. Enzyme-like acceleration for the hydrolysis of a DNA model promoted by a dinuclear Zn(II) catalyst in dilute aqueous ethanol. J. Am. Chem. Soc. 2008, 130 (42), 13870–13872.
73. Refaat, J.; Samy, M. N.; Desoukey, S. Y.; Ramadan, M. A.; Sugimoto, S.; Matsunami, K.; Kamel, M. S. Chemical constituents from Chorisia chodatii. Med. Chem. Res. 2015, 24 (7), 2939–2949.
74. Kasiyamhuru, A.; Muchuweti, M.; Ndhlala, A. R. Estimation of the degree of polymerization of condensed tannins of some wild fruits of Zimbabwe (Uapaca kirkiana and Ziziphus mauritiana) using the modified vanillin-HCl method. J. Sci. Food Agric. 2005, 85 (10), 1647–1650.
75. Roumeas, L.; Aouf, C.; Dubreucq, E.; Fulcrand, H. Depolymerisation of condensed tannins in ethanol as a gateway to biosourced phenolic synthons. Green Chem. 2013, 15 (11), 3268.
76. Bunton, C. A.; Foroudian, H. J.; Gillitt, N. D. Reduction ofo-iodosobenzoate ion by sulfides and its oxidative regeneration. J. Phys. Org. Chem. 1999, 12 (10), 758–764.
77. Morimoto, S.; Nonaka, G.-I.; Chen, R.-F.; Nishioka, I. Tannins and related compounds. LXI. : isolation and structures of novel bi- and triflavanoids from the leaves of Cassia fistula L. Chem. Pharm. Bull. (Tokyo) 1988, 36 (1), 39–47.
78. Xinzhi Chen; Shaodong Zhou; Chao Qian. Hydrogen transfer reduction of nitriles in DBU based ionic liquids. Ark. Online J. Org. Chem. 128–136 (2012).
79. W Washida, K.; Itoh, Y.; Iwashita, T.; Nomoto, K. Androgen modulators from the roots of Paeonia lactiflora (Paeoniae Radix) grown and processed in Nara Prefecture, Japan. Chem. Pharm. Bull. (Tokyo) 57, 971–974 (2009).
80. Juan, Y.-C.; Liao, J.-F.; Tsai, W.-J. Effects of the ethanol extract of Paeoniae Radix in db/db diabetic mice and its inhibitory mechanisms on hepatic PEPCK expression. 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49380-
dc.description.abstract赤芍(Paeoniae Rubra Radix)為芍藥科 (Paeoniaceae) 芍藥屬 (Paeonia) 之植物的帶皮乾燥根,是傳統中藥中的一種重要草藥,常用於治療糖尿病之方劑中。赤芍的乙醇萃取物經液─液萃取以極性劃分成正己烷、二氯甲烷和水可溶部分,水可溶部分進一步利用Sephadex LH-20、silica gel、Lobar RP-18和半製備HPLC等管柱分離純化,化合物結構透過NMR與質譜技術判定。共計得到10個化合物,包括5個單萜類 (monoterpenoids) 成分:paeoniflorin (1) 、 oxypaeoniflorin (2)、benzylpaeoniflorin (3)、4-O-methyl paeoniflorin (4)、paeonidanin (5)、 1個黃酮類 (flavonoid) 成分:ent-catechin (6); 1個苷類 (glycoside) 成分:1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (7); 以及3個苯甲酸類 (benzoic acids) 成分:benzoic acid (8)、4-hydroxybenzoic acid (9)、vanillic acid (10) 。其中化合物7屬於可水解單寧類 (hydrolyzable tannin),具有擬胰島素 (insulin-mimetic) 的活性1,能使胰島素受器磷酸化而活化胰島素訊號傳遞路徑,達到降低血糖的效果,因此具有極高的藥物發展潛力。此篇研究中化合物7由赤芍之分離方法,較其他種類或分離方法4, 66, 67提升了赤芍中取得化合物7的量高1.6~4.1倍。本研究使用之分離方法可進一步研究以對可水解單寧之分離純化有更多進展。
多酚類成分常見於天然植物中,屬於次級代謝物,在抵抗外部病菌侵入發揮了重要功用,因此具有極高的藥物研發潛力。本研究探討赤芍乙醇萃取物經高多孔性樹脂Diaion HP20吸附後,以極性切割劃分為乙酸乙酯可溶部分、水可溶部分以及沉澱物NPF (non-PGG fraction)。NPF經過三氟乙酸進行酸水解反應後,以液─液萃取法將水解產物為乙酸乙酯及水可溶部分。將兩部分與縮合單寧、可水解單寧分別進行顯色反應以比較其特性,在使用三氯化鐵 (FeCl3, 1%)、溴水 (Br2, 3%)、四乙酸鉛 [Pb(C2H3O2)4, 1%] 及硫酸亞鐵胺 [FeNH4 (SO4)2, 1%] 等試劑反應後,得到此NPF之化學性質與縮合單寧有類似之實驗結果,以香草醛─鹽酸法檢驗不同批次生產之NPF,判斷含縮合單寧比例分別為25.8%與32.1%。其後以兩種硫化物試劑反應後,確立了以苄硫醇(benzyl mercaptan) 試劑進行聚合性多酚之硫解反應,可得到具再現性之液相層析圖譜,並以Lobar B type製備管柱純化,得到T−1、T−2、T−3、T−4、T−5五個化合物,其中T-2之化學結構以NMR與質譜技術判定,推測為(−)-epicatechin 4β-benzylthioether,可得知NPF之部分縮合單寧結構。
zh_TW
dc.description.abstractPaeoniae Rubra Radix (PRR), the dried root with bark of Paeoniaceae, is an important traditional Chinese medicine often used in anti-diabetic drugs. Ethanol extract of PRR was divided into fractions soluble in n-hexane, dichloromethane (DCM) and water via liquid−liquid partitioning process, The water-soluble fractions was separated by chromatographic methods including Sephadex LH-20, Silica gel, Lobar RP-18 column and semi-preparative HPLC to afford 10 compounds (1-10).
These compounds were characterized as five monoterpenoids: paeoniflorin (1), oxypaeoniflorin (2), benzoylpaeoniflorin (3), 4-O-methylpaeoniflorin (4), paeonidanin (5); one flavonoids: ent-catechin (6); one glycoside: 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (7); and three benzoic acid derivates: benzoic acid (8), 4-hydroxybenzoic acid (9), vanillic acid (10).
In terms of its anti-diabetic activity, Compound 7 have insulin-mimetic activity1, which enables the phosphorylation of insulin receptors, and activate the insulin signal transmission path, thereby achieve the function of lowering blood sugar, thus, Compound 7 has high potential for drugs development. The method of extraction and isolation in this study4, 66, 67 enhance the yield of 7 about 1.6~4.1 times from peony plants, this method is expected to further develop for hydrolyzed tannin purification.
Polyphenols are common second metabolites found in a number of plants, These compounds play important roles against herbivory and infections of bacteria, and therefore being high potential for the development of anti-diabetic drug. This study was to evaluate the dried Paeoniae Rubra Radix ethanol extracts, after adsorbed with high porous Diaion HP20, the Diaion HP20 absorbate were suspended in water and partitioned with ethyl acetate, then divided into fractions soluble in EtOAc, water and the precipitate via liquid−liquid partitioning process. The precipitate was hydrolyzed by trifluoroacetic acid, and divided hydrolysates into water-soluble fraction and ethyl acetate fration, then the two fractions and condensed tannins, hydrolyzable tannins were subjected to colormetric analysis to compare its chemical characteristic, the reagents include: ferric chloride (FeCl3, 1%), bromine (Br2, 3%), lead(IV) acetate [Pb(C2H3O2)4, 1%] and iron(II) ammonium sulfate, the results show that the precipitate has similar chemical characteristics to condensed tannins in this experiment, and the results of Vanillin−HCl assay, examing two different batch of NPF, show 25.8%, 32.1% of the content of condensed tannin respectively. Followed by acid hydrolysis with different concentration and two thiolysis reagent, the method was established by using benzyl mercaptan to thiolyze the polymeric polyphenols, and the liquid chromatography spectrum of the thiolysate shows high reproducibility, after that, use Lobar RP-18 B type to separate thiolysate of the polyphenols to afford 5 compounds: T−1、T−2、T−3、T−4、T−5. Wherein T-2 was analysed by NMR and mass spectrometry, the chemical structure is presumed to be (−)-epicatechin 4β -benzylthioether, that can be part of the NPF condensed tannin structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:26:04Z (GMT). No. of bitstreams: 1
ntu-105-R02423015-1.pdf: 5793168 bytes, checksum: 30f3e7dcb7ad4e9a0fdbda5a878aaee0 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1. 緒論及研究目的 1
1.1 研究目的 1
1.2 赤芍之簡介 2
1.3 芍藥屬(Paeonia)成分之文獻回顧 3
2. 實驗結果與討論 26
2.1 赤芍之高極性化學成分 28
2.1.1 單萜類 (Monoterpenoids) 28
2.1.1.1 Paeoniflorin (1) 之結構解析 28
2.1.1.2 Oxypaeoniflorin (2) 之結構解析 30
2.1.1.3 Benzoylpaeoniflorin (3) 之結構解析 32
2.1.1.4 4-O-methylpaeoniflorin (4) 之結構解析 34
2.1.1.5 Paeonidanin (5) 之結構解析 36
2.1.2 黃酮類 (Flavonoids) 38
2.1.2.1 ent-Catechin (6) 之結構解析 38
2.1.3 苷類 (Glycoside) 40
2.1.3.1 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (7) 之結構解析 40
2.1.4 苯甲酸衍生物 (Benzoic acid derivatives) 42
2.1.4.1 Benzoic acid (8) 之結構解析 42
2.1.4.2 4-Hydroxybenzoic acid (9) 之結構解析 42
2.1.4.3 Vanillic acid (10) 之結構解析 42
2.2 赤芍降血糖多酚 (NPF) 之研究 44
2.2.1 NPF之質譜 (ESI/MS) 解析 44
2.2.2 酸水解法 44
2.2.3 顯色反應法(Colormetric Analysis) 45
2.2.4 香草醛─鹽酸法 (Vanillin−HCl assay) 46
2.2.5 聚合性多酚之降解方法開發 47
2.2.5.1 2-巰基乙醇 (2-mercaptoethanol, 2-ME) 硫解法 47
2.2.5.2 芐硫醇 (benzyl mercaptan) 硫解法 48
2.2.6 NPF硫解產物之圖譜解析與原聚合物化學結構特徵推判 49
2.2.6.1 硫解產物T-1之圖譜解析 49
2.2.6.2 硫解產物T-2之結構解析 51
2.2.6.3 硫解產物T-3, T-4之結構解析 53
2.2.6.4 硫解產物T-5之結構解析 54
2.3 討論 56
2.3.1 PGG之產率討論 56
2.3.2 NPF之質譜離子強度討論 56
2.4 結論 57
3. 實驗部分 58
3.1 儀器與材料 58
3.1.1 理化性質測定儀器 58
3.1.2 成分分離之儀器及材料 58
3.1.3 試劑與溶媒 59
3.1.4 薄層層析展開系統 59
3.2 赤芍材料來源 59
3.2.1 NPF來源 59
3.3 赤芍成分萃取與純化 60
3.3.1 赤芍高極性化學成分萃取與純化 60
3.3.1.1 水可溶部分之分離 61
3.3.2 赤芍縮合單寧純化 63
3.4 實驗方法 64
3.4.1.1 NPF之酸水解法 64
3.4.1.2 顯色法 64
3.4.1.3 香草醛─鹽酸法 64
3.4.1.4 NPF之硫解反應法I 64
3.4.1.5 NPF之硫解反應法II 64
3.4.1.6 NPF硫解產物之純化 64
3.5 物理性質 65
參考文獻 67
附 圖 77
dc.language.isozh-TW
dc.subject單寧zh_TW
dc.subject赤芍zh_TW
dc.subject多酚zh_TW
dc.subject降血糖zh_TW
dc.subject五?食子醯葡萄糖zh_TW
dc.subjectHypoglycemicen
dc.subjecttanninen
dc.subject6-O-petna-galloyl-β-D-glucopyranoseen
dc.subjectPaeoniae Rubra Radixen
dc.subjectpolyphenolsen
dc.title赤芍之高極性化學成分及降血糖多酚之研究zh_TW
dc.titleChemical Investigation of Polar Constituents and Hypoglycemic Polyphenols from Paeoniae Rubra Radixen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李水盛(Shoei-Sheng Lee),林雲蓮(Yun-Lian Lin),劉慧康(Hui-Kang Liu)
dc.subject.keyword赤芍,多酚,降血糖,五?食子醯葡萄糖,單寧,zh_TW
dc.subject.keywordPaeoniae Rubra Radix,polyphenols,Hypoglycemic,1,2,3,4,6-O-petna-galloyl-β-D-glucopyranose,tannin,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201603104
dc.rights.note有償授權
dc.date.accepted2016-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved