請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49146
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭貽生(Yi-Sheng Cheng) | |
dc.contributor.author | Wei Chen | en |
dc.contributor.author | 陳葳 | zh_TW |
dc.date.accessioned | 2021-06-15T11:17:21Z | - |
dc.date.available | 2016-09-16 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-19 | |
dc.identifier.citation | 簡嘉佑 (2014) 阿拉伯芥PIF3與G-box序列結合的分子機制之研究。國立台灣大學植物科學研究所碩士論文。
Alabadi, D., Gallego-Bartolome, J., Orlando, L., Garcia-Carcel, L., Rubio, V., Martinez, C., Frigerio, M., Iglesias-Pedraz, J.M., Espinosa, A., Deng, X.W., and Blazquez, M.A. (2008). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53, 324-335. Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373-399. Atchley, W.R., and Fitch, W.M. (1997). A natural classification of the basic helix-loop-helix class of transcription factors. Proc Natl Acad Sci U S A 94, 5172-5176. Ayer, D.E., Kretzner, L., and Eisenman, R.N. (1993). Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211-222. Bai, S., Yao, T., Li, M., Guo, X., Zhang, Y., Zhu, S., and He, Y. (2014). PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. Mol Plant 7, 616-625. Bailey, P.C., Martin, C., Toledo-Ortiz, G., Quail, P.H., Huq, E., Heim, M.A., Jakoby, M., Werber, M., and Weisshaar, B. (2003). Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15, 2497-2502. Blackwood, E.M., and Eisenman, R.N. (1991). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211-1217. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. Buck, M.J., and Atchley, W.R. (2003). Phylogenetic analysis of plant basic helix-loop-helix proteins. J Mol Evol 56, 742-750. Castillon, A., Shen, H., and Huq, E. (2007). Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12, 514-521. Chapman, E.J., Greenham, K., Castillejo, C., Sartor, R., Bialy, A., Sun, T.P., and Estelle, M. (2012). Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS One 7, e36210. Crozatier, M., Valle, D., Dubois, L., Ibnsouda, S., and Vincent, A. (1996). Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 6, 707-718. de Lucas, M., Daviere, J.M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J.M., Lorrain, S., Fankhauser, C., Blazquez, M.A., Titarenko, E., and Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484. Ecker, J.R. (1995). The ethylene signal transduction pathway in plants. Science 268, 667-675. Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., Chen, L., Yu, L., Iglesias-Pedraz, J.M., Kircher, S., Schafer, E., Fu, X., Fan, L.M., and Deng, X.W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475-479. Franklin, K.A., Lee, S.H., Patel, D., Kumar, S.V., Spartz, A.K., Gu, C., Ye, S., Yu, P., Breen, G., Cohen, J.D., Wigge, P.A., and Gray, W.M. (2011). Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108, 20231-20235. Freyer, M.W., and Lewis, E.A. (2008). Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84, 79-113. Galvao, V.C., and Fankhauser, C. (2015). Sensing the light environment in plants: photoreceptors and early signaling steps. Curr Opin Neurobiol 34, 46-53. Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I., and Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28, 1091-1101. Halaban, R. (1969). Effects of light quality on the circadian rhythm of leaf movement of a short-day-plant. Plant Physiol 44, 973-977. Heim, M.A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., and Bailey, P.C. (2003). The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20, 735-747. Hersch, M., Lorrain, S., de Wit, M., Trevisan, M., Ljung, K., Bergmann, S., and Fankhauser, C. (2014). Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc Natl Acad Sci U S A 111, 6515-6520. Hornitschek, P., Kohnen, M.V., Lorrain, S., Rougemont, J., Ljung, K., Lopez-Vidriero, I., Franco-Zorrilla, J.M., Solano, R., Trevisan, M., Pradervand, S., Xenarios, I., and Fankhauser, C. (2012). Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71, 699-711. Hua, X., Yokoyama, C., Wu, J., Briggs, M.R., Brown, M.S., Goldstein, J.L., and Wang, X. (1993). SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci U S A 90, 11603-11607. Igamberdiev, A.U., Eprintsev, A.T., Fedorin, D.N., and Popov, V.N. (2014). Phytochrome-mediated regulation of plant respiration and photorespiration. Plant Cell Environ 37, 290-299. Josse, E.M., and Halliday, K.J. (2008). Skotomorphogenesis: the dark side of light signalling. Curr Biol 18, R1144-1146. Khanna, R., Huq, E., Kikis, E.A., Al-Sady, B., Lanzatella, C., and Quail, P.H. (2004). A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16, 3033-3044. Kiribuchi, K., Jikumaru, Y., Kaku, H., Minami, E., Hasegawa, M., Kodama, O., Seto, H., Okada, K., Nojiri, H., and Yamane, H. (2005). Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem 69, 1042-1044. Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., and Franklin, K.A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19, 408-413. Lau, O.S., and Deng, X.W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13, 571-577. Ledent, V., and Vervoort, M. (2001). The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11, 754-770. Ledent, V., Paquet, O., and Vervoort, M. (2002). Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol 3, RESEARCH0030. Lee, B.H., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155-3175. Leimeister, C., Externbrink, A., Klamt, B., and Gessler, M. (1999). Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85, 173-177. Leivar, P., and Quail, P.H. (2011). PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16, 19-28. Li, X., Duan, X., Jiang, H., Sun, Y., Tang, Y., Yuan, Z., Guo, J., Liang, W., Chen, L., Yin, J., Ma, H., Wang, J., and Zhang, D. (2006). Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141, 1167-1184. Liu, X., Chen, C.Y., Wang, K.C., Luo, M., Tai, R., Yuan, L., Zhao, M., Yang, S., Tian, G., Cui, Y., Hsieh, H.L., and Wu, K. (2013). PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25, 1258-1273. Miller, G., Shulaev, V., and Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiol Plant 133, 481-489. Moreno, J.E., and Ballare, C.L. (2014). Phytochrome regulation of plant immunity in vegetation canopies. J Chem Ecol 40, 848-857. Niesen, F.H., Berglund, H., and Vedadi, M. (2007). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2, 2212-2221. Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., and Choi, G. (2009). Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21, 403-419. Quail, P.H. (1991). Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet 25, 389-409. Quail, P.H. (1998). The phytochrome family: dissection of functional roles and signalling pathways among family members. Philos Trans R Soc Lond B Biol Sci 353, 1399-1403. Quail, P.H. (2010). Phytochromes. Curr Biol 20, R504-507. Ruiz-Sola, M.A., Rodriguez-Villalon, A., and Rodriguez-Concepcion, M. (2014). Light-sensitive Phytochrome-Interacting Factors (PIFs) are not required to regulate phytoene synthase gene expression in the root. Plant Signal Behav 9. Seitz, S.B., Voytsekh, O., Mohan, K.M., and Mittag, M. (2010). The role of an E-box element: multiple frunctions and interacting partners. Plant Signal Behav 5, 1077-1080. Seo, J.S., Joo, J., Kim, M.J., Kim, Y.K., Nahm, B.H., Song, S.I., Cheong, J.J., Lee, J.S., Kim, J.K., and Choi, Y.D. (2011). OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65, 907-921. Shen, H., Moon, J., and Huq, E. (2005). PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44, 1023-1035. Shimizu, T., Toumoto, A., Ihara, K., Shimizu, M., Kyogoku, Y., Ogawa, N., Oshima, Y., and Hakoshima, T. (1997). Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J 16, 4689-4697. Shin, A.Y., Han, Y.J., Baek, A., Ahn, T., Kim, S.Y., Nguyen, T.S., Son, M., Lee, K.W., Shen, Y., Song, P.S., and Kim, J.I. (2016). Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat Commun 7, 11545. Simionato, E., Ledent, V., Richards, G., Thomas-Chollier, M., Kerner, P., Coornaert, D., Degnan, B.M., and Vervoort, M. (2007). Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7, 33. Smalle, J., Haegman, M., Kurepa, J., Van Montagu, M., and Straeten, D.V. (1997). Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci U S A 94, 2756-2761. Stavang, J.A., Gallego-Bartolome, J., Gomez, M.D., Yoshida, S., Asami, T., Olsen, J.E., Garcia-Martinez, J.L., Alabadi, D., and Blazquez, M.A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60, 589-601. Stephenson, P.G., Fankhauser, C., and Terry, M.J. (2009). PIF3 is a repressor of chloroplast development. Proc Natl Acad Sci U S A 106, 7654-7659. Suzuki, J.Y., and Bauer, C.E. (1995). A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Natl Acad Sci U S A 92, 3749-3753. Terzaghi, W.B., and Cashmore, A.R. (1995). Photomorphogenesis. Seeing the light in plant development. Curr Biol 5, 466-468. Toledo-Ortiz, G., Huq, E., and Quail, P.H. (2003). The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15, 1749-1770. Wang, Z., Wu, Y., Li, L., and Su, X.D. (2013). Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA. Cell Res 23, 213-224. Yokoyama, C., Wang, X., Briggs, M.R., Admon, A., Wu, J., Hua, X., Goldstein, J.L., and Brown, M.S. (1993). SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75, 187-197. Zhang, Y., Mayba, O., Pfeiffer, A., Shi, H., Tepperman, J.M., Speed, T.P., and Quail, P.H. (2013). A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis. PLoS Genet 9, e1003244. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49146 | - |
dc.description.abstract | PHYTOCHROME INTERACTING FACTOR3(PIF3)是植物體內和光訊息傳導有關的重要轉錄因子,透過負調控光訊息傳遞,使植物在黑暗下抑制葉綠素生合成、光合作用及光型態發生等反應。PIF3參與在負調控光訊息傳遞路徑,惟其與上游啟動子的結合機制尚不清楚,本研究透過前人模擬結構及生物物理測定,探究PIF3 DNA結合區與DNA之結合機制。
以單點突變實驗分析各胺基酸位點對二聚體形成的影響,將疏水性胺基酸Leu392、Tyr388、Leu366及Met363個別突變後以膠體過濾層析結果顯示,bHLH會凝集成一巨大分子,失去原有二聚體構型;Met399及Lys362突變後仍能維持原有二聚體狀態。利用螢光電泳遷移實驗(Fluorescein-based electrophoretic mobility shift assay; fEMSA)及等溫滴定微熱量法(Isothermal titration calorimetry; ITC)測量bHLH與G-box DNA(CACGTG)專一性結合能力,將bHLH與DNA鍵結的胺基酸His348、Glu352、Arg355及Arg356,分別突變成Alanine後使得與DNA結合常數上升約1.5至3倍。為測試G-box (CACGTG) 與E-box (CANNTG) 結合差異由R356負責,因此以R356A與四種不同序列之E-box (CANNTG)進行螢光標定電泳遷移實驗,結果四種E-box DNA與R356A的結合常數皆相近,顯示R356作為負責辨認G box核心CG序列的重要功能。最後結構生物學的部分以蛋白質共結晶的方式,篩選出兩種結晶試劑再進行溶液微調,希望透過X-ray繞射分析能解出蛋白質複合體之結構。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:17:21Z (GMT). No. of bitstreams: 1 ntu-105-R02b42021-1.pdf: 6299723 bytes, checksum: 2fa06c31bf282852c1037a77a5bdbc6e (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 v
Abstract vi 縮寫對照表 vii 第一章 前言 - 1 一、光敏素(Phytochromes)訊息傳遞路徑 - 2 二、PHYTOCHROME INTERACTING FACTOR3(PIF3)簡介 - 4 三、Basic helix-loop-helix (bHLH)轉錄因子家族 - 5 四、植物之Basic helix-loop-helix (bHLH)轉錄因子家族 - 6 五、各物種相關Basic helix-loop-helix (bHLH)蛋白質之結構 - 7 六、研究目標 - 8 第二章 材料與方法 - 9 一、 材料 - 9 二、 方法 - 9 (一) bHLH點突變基因之構築 - 9 1. bHLH domain 點突變H348A、E352A、R356A、R356A、K362A、M363A、L366F、Y388A、L392H、M399A 之DNA構築 - 9 (二) bHLH蛋白質之表現與純化 - 9 1. 大腸桿菌勝任細胞之製備 - 9 2. 大腸桿菌之轉形作用(Transformation) - 10 3. 重組蛋白質之大量表現(Over-expression)及純化 - 10 4. 蛋白質濃縮以及蛋白質緩衝液置換 - 11 5. 陽離子交換法 - 12 6. 蛋白質定量分析 - 12 7. SDS-聚丙烯醯胺膠體電泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) - 12 (三) bHLH蛋白質形成二聚體之重要胺基酸分析 - 13 1. 膠體過濾層析法(Gel filtration chromatography) - 13 (四) bHLH蛋白質與突變蛋白質之熱穩定性測定 - 14 1. 差異螢光掃描法(Differential scanning fluorimetry, DSF) - 14 (五) bHLH domain對 DNA結合能力之分析 - 14 1. 螢光電泳遷移實驗(Fluorescein-based electrophoretic mobility shift assay) - 14 1.1 雙股DNA製備 - 14 1.2 蛋白質樣品製備 - 15 1.3 原態聚丙烯醯胺膠體電泳(Native-PAGE) - 15 2. 等溫滴定微熱量法(Isothermal titration calorimetry; ITC) - 15 2.1 雙股DNA製備 - 16 2.2 蛋白質樣品製備 - 16 2.3 ITC200儀器操作 - 17 2.4 數據分析方式 - 17 (六) PIF3 bHLH domain蛋白質結晶實驗 - 18 1. Pre-crystallization test (PCT測試) - 18 2. bHLH蛋白質與雙股G-box DNA複合體之結晶條件篩選 - 18 3. X-ray繞射晶體數據搜集 - 19 4. 蛋白質結晶溶液之微調 - 19 (七) bHLH蛋白質之序列比對及結構模擬 - 19 1. PIF3 bHLH domain與其他bHLH家族成員之胺基酸序列比對- 19 2. PIF3 bHLH domain與DNA之複合體模型建立 - 19 第三章 結果 - 20 一、bHLH蛋白質進行陽離子交換實驗 - 20 二、PIF3 bHLH domain形成二聚體之重要胺基酸分析 - 20 (ㄧ)模擬bHLH蛋白質形成二聚體之重要胺基酸結構 - 20 (二)膠體過濾層析法分析不同突變bHLH蛋白質在溶液中多聚體形式 - 21 三、bHLH蛋白質與突變蛋白質之熱穩定性測定 - 21 四、 PIF3 bHLH domain之不同突變蛋白質與G-box DNA之結合能力分析 - 22 (ㄧ)模擬bHLH蛋白質與DNA之重要胺基酸結構 - 22 (二)利用螢光電泳遷移率實驗分析不同蛋白質與G-box DNA之親和性 - 22 (三)利用等溫滴定微熱量法(ITC)分析不同蛋白質和DNA之親和性 -23 五、 PIF3 bHLH 之突變蛋白質R356A與不同E-box DNA結合能力分析 - 23 六、bHLH蛋白質之晶體篩選 - 24 第四章 討論 - 25 一、 PIF3 bHLH蛋白質進行陽離子交換實驗 - 25 二、PIF3之bHLH domain序列分析及蛋白質結構模擬探討- 26 三、 以膠體過濾層析法(GF)分析突變蛋白質多聚體組成之形式 -26 四、 bHLH蛋白質與突變蛋白質之熱穩定性探討 - 26 五、 以不同結合力試驗分析bHLH蛋白質與DNA之結合能力- 27 六、 以fEMSA及ITC分析G-box DNA與不同突變bHLH蛋白質之結合能力 - 28 七、PIF3 bHLH domain之突變蛋白質R356A與E-box DNA結合能力 -29 第五章 結論 - 30 參考文獻 - 31 圖表 - 36 表一、PIF3之bHLH domain以DSF法測得之變性溫度(Tm) - 36 表二、不同bHLH蛋白質以ITC分析對G-box DNA結合能力之熱力學參數 - 37 表三、ITC分析R356A蛋白質與不同E-box DNA之結合常數- 38 圖一、bHLH蛋白質大量表現及純化結果 - 39 圖二、陽離子交換法分離出具有功能的bHLH蛋白質 - 40 圖三、bHLH蛋白質形成二聚體形式之重要胺基酸分析 - 42 圖四、標準分子量之蛋白質膠體過濾色層分析 - 43 圖五-1、膠體過濾層析法分析bHLH蛋白質在溶液中的多聚體形式 -44 圖五-2、膠體過濾層析法分析不同突變bHLH蛋白質在溶液中的多聚體形式 - 45 圖六、bHLH蛋白質與G-box DNA結合之重要胺基酸分析 - 46 圖七、fEMSA測定bHLH-WT蛋白質與G-box DNA結合能力 - 48 圖八、ITC測定bHLH蛋白質與G-box DNA結合能力 - 50 圖九、PIF3 bHLH domain之突變蛋白質R356A與E-box DNA結合能力分析 - 52 圖十、ITC測定bHLH-R356A蛋白質與不同E-box DNA結合分析- 53 圖十一、篩晶實驗得到之bHLH與雙股DNA複合體結晶 - 54 附錄 - 55 附錄一、bHLH domain單點突變所使用之引子(primer) - 55 附錄二、單點突變之聚合酶連鎖反應參數設定 - 56 附錄三、PIF3之bHLH domain重組蛋白純化之試劑 - 56 附錄四、陽離子交換法之試劑 - 57 附錄五、SDS 膠體電泳之試劑 - 58 附錄六、fEMSA之試劑 - 59 附錄七、探針序列列表 - 60 附錄八、ITC之試劑 - 60 附錄九、蛋白質結晶濃度之PCT試劑 - 61 附錄十、蛋白質養晶實驗母液成分微調整理 - 62 附圖一、阿拉伯芥中PIFs家族成員 - 63 附圖二、阿拉伯芥PIF3 之bHLH domain構築於表現載體pET21b- 64 附圖三、bHLH蛋白質之多聚體組成分析 - 65 附圖四、差異性螢光掃描法 (Differentail scanning fluorimetry, DSF) - 66 附圖五、坐式蒸氣擴散法示意圖 - 67 附圖六、利用序列分析探討bHLH domain之保守性胺基酸- 68 附圖七、植物bHLH domain序列相似性分析 - 69 | |
dc.language.iso | zh-TW | |
dc.title | 阿拉伯芥 PIF3 之bHLH 功能區結構與功能分析 | zh_TW |
dc.title | Strucutral and Functional Analyses of bHLH Domain of
Arabidopsis PIF3 | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張孟基(Men-Chi Chang),張世宗(Shih-Chung Chang),詹明才(Ming-Tsair Chan),吳克強(Keqiang Wu) | |
dc.subject.keyword | 光敏素調控因子, | zh_TW |
dc.subject.keyword | PIF3,bHLH domain, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201602954 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-20 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 6.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。