Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48991
Title: 針對一次正則化及分組一次正則化問題的隨機活動集近端擬牛頓法
Stochastic Active-Set Proximal Quasi-Newton Method for L1 and Group-L1 Regularized Learning
Authors: Yu-Chen Lu
盧昱辰
Advisor: 林守德(Shou-De Lin)
Keyword: 特徵選擇,大規模學習,
feature selection,large-scale learning,
Publication Year : 2016
Degree: 碩士
Abstract: 一次正則化(L1 regularization)已經是標準的特徵選取(feature selection)方法之一。當我們對於資料特徵有額外的結構資訊,我們可以將特徵選取延伸至挑選一些預先定義的特徵集合,而這可以由分組一次正規化(group-L1 regularization)來達成。面對高維度的機器學習問題,shrinking 以及貪婪方法常被用來維護一個工作集以縮小問題。然而shrinking 採取太過保守的策略,而貪婪方法需要過多的花費。在這篇論文中,我們提出了隨機活動集方法(Stochastic Active-Set method),透過無偏的近似貪婪方法維護一個活動集,並有夠高的機率達到收斂。藉由一個雙重採樣的策略,我們平衡了搜尋特徵空間的花費以及活動集的效果。除此之外,為了應對那些計算密集的損失函數,我們建構了一個擬牛頓法的新變體來配合我們的活動集方法,因此不需要計算所有的損失函數梯度。在我們的實驗中,對於計算密集的損失函數的一次正規化以及分組一次正規化問題,我們所提出的方法相較於目前最先進的方法,展現出了顯著的加速。
L1 regularization has become one of the standard techniques for feature selection. Furthermore, when structural prior knowledge is available, we can extend the feature selection problem to selecting (predefined) groups of variables, which can be achieved via solving a Lp;1 regularization. To deal with high dimensional learning tasks, shrinking heuristics and greedy method are often exploited to maintain a relatively small working set. However, in practice, shrinking could be too conservative while greedy method could be too expensive in the search of greedy variable. In this work, we propose a Stochastic Active-Set method that maintains an active-set by an approximate and unbiased greedy search method that finds active variables with certain probability suffices to achieve fast convergence. A balance between exploiting active set and exploring high-dimensional space is achieved via a double sampling strategy. In addition, to handle loss function of expensive evaluation cost, we construct a new variant of Quasi-Newton approximation for our Active-Set method, which does not require computation of the whole gradient vector. In our experiments, the proposed algorithm leads to significant speed up over state-of-the-art solvers for L1, L2;1 and Linf;1 regularized problems of computationally expensive loss function.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48991
DOI: 10.6342/NTU201603353
Fulltext Rights: 有償授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
1.84 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved