請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4874完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁偉立(Wei-Li Liang) | |
| dc.contributor.author | Meng-Chun Chan | en |
| dc.contributor.author | 詹孟浚 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:49:19Z | - |
| dc.date.available | 2017-03-13 | |
| dc.date.available | 2021-05-14T17:49:19Z | - |
| dc.date.copyright | 2015-03-13 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-01-19 | |
| dc.identifier.citation | 林光清、洪富文、程煒兒、蔣先覺、張雲翔 (1996),「福山試驗林土壤調查與分類」,台灣林業科學,11(2):159-174。
夏禹九、黃正良 (1999),「福山試驗林的水文特性」,中華林學季刊,32(1):39-51。 Beven, K. J., and Kirkby, M. J. (1979). “A physically based, variable contributing area model of basin hydrology.” Hydrological Sciences Bulletin, 24(1), 43-69. Burt, T. P., and Butcher, D. P. (1985). “Topographic controls of soil moisture distributions.” Journal of Soil Science, 36(3), 469-486. Fujimoto, M., Ohte, N., and Tani, M. (2008). “Effects of hillslope topography on hydrological responses in a weathered granite mountain, Japan: comparison of the runoff response between the valley-head and the side slope.” Hydrological Processes, 22(14), 2581-2594. Hewlett, J. D., and Hibbert, A. R. (1967). “Factors affecting the response of small watersheds to precipitation in humid areas.” Forest Hydrology, W. E. Sopper, and H. W. Lull, eds., 275-291. Kirkby, M. J., and Chorley, R. J. (1967). “Throughflow, overland flow and erosion.” International Association of Scientific Hydrology. Bulletin, 12(3), 5-21. Kosugi, K., Katsura, S., Katsuyama, M., and Mizuyama, T. (2006). “Water flow processes in weathered granitic bedrock and their effects on runoff generation in a small headwater catchment.” Water Resources Research, 42(2), W02414. Luxmoore, R. J., Jardine, P. M., Wilson, G. V., Jones, J. R., and Zelazny, L. W. (1990). “Physical and chemical controls of preferred path flow through a forested hillslope.” Geoderma, 46(1–3), 139-154. McDonnell, J. J. (1990). “A Rationale for Old Water Discharge Through Macropores in a Steep, Humid Catchment.” Water Resources Research, 26(11), 2821-2832. Montgomery, D. R., and Dietrich, W. E. (1994). “A physically based model for the topographic control on shallow landsliding.” Water Resources Research, 30(4), 1153-1171. Mosley, M. P. (1979). “Streamflow generation in a forested watershed, New Zealand.” Water Resources Research, 15(4), 795-806. Okimura, T., and Tanaka, S. (1980). “Researches on soil horizon of weathered granite mountain slope and failured surface depth in a test field.” Journal of the Japan Society of Erosion Control Engineering, 33(1), 7-16. Tarboton, D. G. (1997). “A new method for the determination of flow directions and upslope areas in grid digital elevation models.” Water Resources Research, 33(2), 309-319. Tromp-van Meerveld, H. J., and McDonnell, J. J. (2006). “Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis.” Water Resources Research, 42(2), W02411. Tsuboyama, Y., Sidle, R. C., Noguchi, S., Murakami, S., and Shimizu, T. (2000). “A zero-order basin—its contribution to catchment hydrology and internal hydrological processes.” Hydrological Processes, 14(3), 387-401. Tsukamoto, Y., and Ohta, T. (1988). “Runoff process on a steep forested slope.” Journal of Hydrology, 102(1–4), 165-178. Tsukamoto, Y., Ohta, T., and Noguchi, H. (1982). “Hydrological and geomorphological studies of debris slides on forested hillslopes in Japan.” International Association of Hydrological Sciences Publication, 137, 89-98. Uchida, T., Asano, Y., Mizuyama, T., and McDonnell, J. J. (2004). “Role of upslope soil pore pressure on lateral subsurface storm flow dynamics.” Water Resources Research, 40(12), W12401. Weyman, D. R. (1973). “Measurements of the downslope flow of water in a soil.” Journal of Hydrology, 20(3), 267-288. Yoshimatsu, H., Kawamitsu, K., Senoo, K., and Hasegawa, S. (2002). “Simplified penetrometer for surface structure survey in hillslopes.” Transaction of Japan Society of Erosion Control Engineering, 392-393. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4874 | - |
| dc.description.abstract | 森林源頭集水區是水文變動敏感、土砂移動盛行的區域,基岩面上飽和帶的分布和連通性與逕流量有很高的相關性。前人研究中指出基岩面上的飽和帶有由下而上和由上而下兩種擴張類型,而飽和帶的擴張受土壤厚度、基岩面地形所控制。本研究透過高密度觀測集水區源頭部基岩面上孔隙水壓的時空變化,探討飽和帶在降雨期間的擴張模式,並推測飽和帶擴張的機制。研究結果顯示土壤厚度具有很大的空間變異,基岩面地形相較於地表面有很大的起伏,特別在坡面中、下段。推測坡面中段岩層曾向下滑動並堆積於坡面下段,因此坡面中、下段基岩面應較坡面上段還破碎。飽和帶的時空變動,在降雨發生後,除了由坡面下段沖蝕溝及左側凹地向上擴張,亦於坡面上段有獨立的飽和帶發生並向下擴張,當累積雨量更大時,上下坡段的飽和帶會透過坡面中段的飽和帶通道互相連通。土壤厚度是主導飽和帶發生先後順序的重要因子,飽和帶擴張的主要機制是水分垂直滲透及沿基岩面向下移動的飽和側向流。坡面中段除飽和帶較晚發生,多數測點在降雨中未達飽和,推測是坡面中段基岩面較破碎,水分會往岩層中滲漏,降低坡面上下段飽和帶的連通性。本研究提出在探討源頭集水區地表下飽和帶的變動情形,除了土壤厚度、基岩面地形外,基岩面的水文特性如破碎程度也應納入考量。 | zh_TW |
| dc.description.abstract | A headwater catchment is an area with variable hydrological characteristics and sediment transportation. Many previous studies indicated that stream flow is highly correlated with the distribution and connectivity of the saturated zones at the soil–bedrock interface. Subsurface saturation would expand downslope or upslope during rainfall events, which is controlled by soil depth and bedrock topography. In this study, we measured the pressure head at the soil–bedrock interface with a high resolution during rainfall events to clarify the pattern and mechanism of the expansion of subsurface saturation. The result showed that there are great spatial variations in soil depth, and the bedrock topography is more uneven than surface topography, especially at the middle and the lower parts of the slope. Based on surface and bedrock topography, we presume that shallow landslide occurred at the middle slope and sediment moved from the middle slope toward the lower slope. Consequently, the soil–bedrock interface at the middle and lower parts of the slope could be more broken than that at the upper part of the slope. The subsurface saturation at the upper slope would generate locally and expand downward, and subsurface saturation at the lower slope (i.e., gully) would expand to the middle slope in the early stage during the rainfall events. In the later stage when the rainfall amount increased, subsurface saturation at the upper and lower slopes would be connected at the middle slope. The sequence of the generation of subsurface saturation was much related to soil depth. Infiltration and lateral saturated flow at the soil–bedrock interface are the main mechanisms of the expansion of subsurface saturation. We presume that subsurface saturation at the middle slope would infiltrate into bedrock layers rapidly, which reduced the connectivity of subsurface saturation between the upper slope and the lower slope. We proposed that the hydrological properties of soil–bedrock interface, such as the fragmentation in the soil–bedrock interface, is an important factor in discussing the spatial and temporal variations in the subsurface saturation in a headwater catchment. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:49:19Z (GMT). No. of bitstreams: 1 ntu-104-R01625007-1.pdf: 2756042 bytes, checksum: a838fd52459e739c834094ad69f5a196 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III 英文摘要 IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章、前言 1 1.1 研究動機與背景 1 1.2 基岩面上飽和帶變動理論 2 1.3 研究目的及論文架構 5 第二章、研究材料與方法 7 2.1 試驗地簡介 7 2.2 現地調查 9 2.2.1 地表面地形 9 2.2.2 土壤厚度及基岩面地形 9 2.3 現地觀測 11 2.3.1 降雨量 11 2.3.2 土壤─基岩交界面的壓力水頭 11 2.4 資料分析 13 2.4.1 數值地形模型 (digital elevation model, DEM) 13 2.4.2 數值地形分析 (digital terrain analysis, DTA) 13 2.4.3 降雨事件 15 2.4.4 壓力水頭時間與空間分布 15 第三章、試驗坡面土壤厚度和地形因子特性 16 3.1 土壤厚度空間分布、地表面及基岩面地形 16 3.2 土壤厚度分布及基岩面地形特徵 19 第四章、基岩面上土壤壓力水頭在降雨中的反應特性 22 4.1 觀測期間 22 4.2 降雨事件中基岩面上飽和帶的擴張表現 24 第五章、飽和帶在降雨過程中時空變化的機制 31 5.1 影響飽和帶擴張的因子及機制 31 5.2 降雨事件中飽和帶擴張模式 35 5.3 本研究中坡面基岩面上飽和帶擴張理論與前人研究比較 37 第六章、結論 39 參考文獻 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地中飽和帶 | zh_TW |
| dc.subject | 土壤厚度 | zh_TW |
| dc.subject | 源頭集水區 | zh_TW |
| dc.subject | 張力計 | zh_TW |
| dc.subject | 簡易貫入試驗 | zh_TW |
| dc.subject | 基岩面 | zh_TW |
| dc.subject | soil–bedrock interface | en |
| dc.subject | cone penetration test | en |
| dc.subject | headwater catchment | en |
| dc.subject | subsurface saturation | en |
| dc.subject | soil depth | en |
| dc.subject | tensiometer | en |
| dc.title | 集水區源頭部基岩面上飽和帶在降水中的時空變動 | zh_TW |
| dc.title | Spatial and Temporal Variations in Subsurface Saturation at the Soil-bedrock Interface during Rainfall Events in a Headwater Catchment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信雄,廖學誠,黃誌川 | |
| dc.subject.keyword | 簡易貫入試驗,源頭集水區,地中飽和帶,土壤厚度,基岩面,張力計, | zh_TW |
| dc.subject.keyword | cone penetration test,headwater catchment,subsurface saturation,soil depth,soil–bedrock interface,tensiometer, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-01-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 2.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
