Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4860
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平(Yi-Ping Hung)
dc.contributor.authorChih-Wei Linen
dc.contributor.author林志瑋zh_TW
dc.date.accessioned2021-05-14T17:48:59Z-
dc.date.available2020-01-30
dc.date.available2021-05-14T17:48:59Z-
dc.date.copyright2015-01-30
dc.date.issued2015
dc.date.submitted2015-01-27
dc.identifier.citation[1] C. Stauffer and W. E. L. Grimson, 'Learning patterns of activity using real-time tracking,' Pattern Analysis and Machine Intelligence,IEEE Transactions on , vol. 22, no. 8, pp. 747-757, 2000.
[2] K. Kim, T. H. Chalidabhongse, D. Harwood and L. Davis, 'Real-time foreground–background segmentation using codebook model,' Real-time imaging, vol. 11, no. 3, pp. 172-185, 2005.
[3] M. Andriluka, S. Roth and B. Schiele, 'People-tracking-by-detection and people detection-by-tracking,' in Proceeding of the IEEE International Conference on Computer Vision and Pattern Recognition, 2009.
[4] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, 'A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking,' Signal Processing, IEEE Transactions on, vol. 50, no. 2, pp. 174-188, 2002.
[5] P. N. Belhumeur, J. P. Hespanha and D. Kriegman, 'Eigenfaces vs. fisherfaces:Recognition using class specific linear projection,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, no. 7, pp. 711-720, 1997.
[6] D. J. Dailey, F. W. Cathey and S. Pumrin, 'An algorithm to estimate mean traffic speed using uncalibrated cameras,' Intelligent Transportation Systems, IEEE Transactions on,, vol. 1, no. 2, pp. 98-107, 2000.
[7] A. J. Lipton, H. Fujiyoshi and R. S. Patil., 'Moving target classification and tracking from real-time video,' in Proceeding of the 4th IEEE Workshop on Applications of Computer Vision, 1998.
[8] C. Stauffer and W. E. L. Grimson, 'Adaptive background mixture models for real-time tracking.,' in the IEEE Computer Society Conference on the Computer Vision and Pattern Recognition, 1999.
[9] K. Kim, T. H. Chalidabhongse, D. Harwood and L. Davis, 'Background modeling and subtraction by codebook construction,' in the IEEE International Conference on Image Processing, 2004.
[10] O. Barnich and M. Van Droogenbroeck, 'Vibe: A universal background subtraction algorithm for video sequences,' Image Processing, IEEE Transactions on, vol. 20, no. 6, pp. 1709-1724, 2011.
[11] K. Toyama, J. Krumm, B. Brumitt and B. Meyers, 'Wallflower: Principles and practice of background maintenance,' in Proceedings of the 7th IEEE International Conference on Computer Vision, 1999.
[12] L. Li, W. Huang, I. H. Gu and Q. Tian, 'Statistical modeling of complex backgrounds for foreground object detection,' Image Processing, IEEE Transactions on,, vol. 13, no. 11, pp. 1459-1472, 2004.
[13] T. Zhao and R. Nevatia, 'Stochastic human segmentation from a static camera,' in Proceedings of the IEEE Workshop on Motion and Video Computing, 2002.
[14] T. Zhao and R. Nevatia, 'Bayesian human segmentation in crowded situations,' in Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003.
[15] M. Lalonde, S. Foucher, L. Gagnon, E. Pronovost, M. Derenne and A. Janelle, 'A system to automatically track humans and vehicles with a ptz camera,' in Proceeding of the International Society for Optics and Photonics on Defense and Security Symposium, 2007.
[16] A. Mian, 'Realtime face detection and tracking using a single pan, tilt, zoom camera,' in Proceeding of the 23th International Conference on Image and Vision Computing New Zealand, 2008.
[17] Y. Ye, J. K. Tsotsos, E. Harley and K. Bennet, 'Tracking a person with pre-recorded image database and a pan, tilt, and zoom camera,' Machine Vision and Applications, vol. 12, no. 1, pp. 32-43, 2000.
[18] P. Viola and M. J. Jones, 'Robust real-time face detection,' International journal of computer vision, vol. 57, no. 2, pp. 137-154, 2004.
[19] A. Ess, B. Leibe, K. Schindler and L. Van Gool, 'A mobile vision system for robust multi-person tracking,' in Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, 2008.
[20] Q. Wang, F. Chen, W. Xu and M. H. Yang., 'Object tracking via partial least squares analysis,' Image Processing, IEEE Transactions on, vol. 21, no. 10, pp. 4454-4465, 2012.
[21] R. Wang, S. Shan, X. Chen, Q. Dai and W. Gao, 'Manifold–manifold distance and its application to face recognition with image sets,' Image Processing, IEEE Transactions, vol. 21, no. 10, p. 4466–4479, 2012.
[22] W. Zhao, R. Chellappa, P. J. Phillips and A. Rosenfeld, 'Face recognition: A literature survey.,' Acm Computing Surveys (CSUR), vol. 35, no. 4, p. 399–458, 2003.
[23] S. N. Sinha and M. Pollefeys, 'Pan–tilt–zoom camera calibration and high-resolution mosaic generation,' Computer Vision and Image Understanding, vol. 103, no. 3, p. 170–183, 2006.
[24] K. Xue, G. Ogunmakin, Y. Liu, P. A. Vela and Y. Wang, 'Ptz camera-based adaptive panoramic and multi-layered background model,' in Proceeding of the 18th IEEE International Conference on Image Processing, 2011.
[25] K. Xue, Y. Liu, G. Ogunmakin and J. Zhang, 'Panoramic gaussian mixture model and large-scale range background substraction method for ptz camera-based surveillance systems,' Machine vision and applications, vol. 24, no. 3, p. 477–492, 2013.
[26] L. Marchesotti, L. Marcenaro and C. Regazzoni, 'Dual camera system for face detection in unconstrained environments,' in Proceeding of the IEEE International Conference on Image Processing, 2003.
[27] X. Zhou, R. T. Collins, T. Kanade and P. Metes, 'A master-slave system to acquire biometric imagery of humans at distance,' in In First ACM SIGMM international workshop on Video surveillance, 2003.
[28] C. C. Chen, Y. Yao, A. Drira, A. Koschan and M. Abidi, 'Cooperative mapping of multiple ptz cameras in automated surveillance systems,' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009.
[29] V. K. Singh and P. K. Atrey, 'Coopetitive Visual Surveillance Using Model Predictive Control,' in Proceedings of the Third ACM International Workshop on Video Surveillance and Sensor Networks, 2005.
[30] Z. Zhang, Z. Liu and Q. Zhao, 'Semantic saliency driven camera control for personal remote collaboration,' in Proceedings of the 10th IEEE workshop on multimedia signal processing, 2008.
[31] C. H. Chen, Y. Yao, D. Page, B. Abidi, A. Koschan and M. Abidi, 'Heterogeneous fusion of omnidirectional and ptz cameras for multiple object tracking,' Circuits and Systems for Video Technology, IEEE Transactions on, vol. 18, no. 8, p. 1052–1063, 2008.
[32] A. Alahi, D. Marimon, M. Bierlaire and M. Kunt, 'A master-slave approach for object detection and matching with fixed and mobile cameras,' in Proceedings of the 15th IEEE International Conference on Image Processing, 2008.
[33] C. Micheloni, E. Salvador, F. Bigaran and G. L. Foresti, 'An integrated surveillance system for outdoor security,' in Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2005.
[34] M. Reale, T. Hung and L. Yin, 'Pointing with the eyes: Gaze estimation using a static/active camera system and 3d iris disk model,' in Proceedings of the IEEE International Conference on Multimedia and Expo, 2010.
[35] K. W. Chen, C. W. Lin, M. Y. Chen and Y. P. Hung, 'e-fovea: a multi-resolution approach with steerable focus to large-scale and high-resolution monitoring,' in Proceedings of the International Conference on Multimedia, 2010.
[36] F. Dornaika and J. H. Elder, 'Image registration for foveated panoramic sensing,' ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 8, no. 2, p. 17, 2012.
[37] P. Baudisch, N. Good, V. Bellotti and P. Schraedley, 'Keeping things in context: a comparative evaluation of focus plus context screens, overviews, and zooming,' in Proceedings of the SIGCHI conference on Human factors in computing systems, 2002.
[38] C. Plaisant, D. Carr and B. Shneiderman, 'Image-browser taxonomy and guidelines for designers,' Software, IEEE,, vol. 12, no. 2, p. 21–32, 1995.
[39] P. Baudisch, N. Good and P. Stewart, 'Focus plus context screens: combining display technology with visualization techniques,' in Proceedings of the 14th annual ACM symposium on User interface software and technology, 2001.
[40] T. T. Hu, Y. W. Chia, L. W. Chan, Y. P. Hung and J. Hsu, 'im-top: An interactive multi-resolution tabletop system accommodating to multi-resolution human vision,' in Proceedings of the 3th IEEE International Workshop on Horizontal Interactive Human Computer Systems, 2008.
[41] O. G. Staadt, B. A. Ahlborn, O. Kreylos and B. Hamann, 'A foveal inset for large display environments,' in Proceedings of the 2006 ACM international conference on Virtual reality continuum and its applications, 2006.
[42] K. W. Chen, C. W. Lin, T. H. Chiu, M. Y. Chen and Y. P. Hung, 'Multi-resolution design for large-scale and high-resolution monitoring,' Multimedia, IEEE Transactions on, vol. 13, no. 6, p. 1256–1268, 2011.
[43] V. K. Singh, P. K. Atrey and M. S. Kankanhalli, 'Coopetitive multi-camera surveillance using model predictive control,' Machine Vision and applications, vol. 19, no. 5-6, pp. 375-393, 2008.
[44] P. Natarajan, T. N. Hoang, K. H. Low and M. Kankanhalli, 'Decision-theoretic approach to maximizing observation of multiple targets in multi-camera surveillance,' in Proceedings of the 11th International Conference on Autonomous Agents and Multiagent, 2012.
[45] Y. Cai, G. Medioni and T. B. Dinh, 'Towards a practical ptz face detection and tracking system,' in Proceeding of IEEE Workshop on Applications of Computer Vision, 2013.
[46] C. Micheloni, B. Rinner and G. L. Foresti, 'Video analysis in pan-tilt-zoom camera networks,' Signal Processing Magazine, IEEE, vol. 27, no. 5, pp. 78-90, 2010.
[47] C. Micheloni, G. L. Foresti and L. Snidaro, 'A network of co-operative cameras for visual surveillance,' Vision, Image and Signal Processing, vol. 15, no. 2, pp. 205-212, 2005.
[48] R. Jain, D. Militzer and H. H. Nagel, Separating non-stationary from stationary scene components in a sequence of real world TV-images, Hamburg: Institut fur Informatik, 1977.
[49] C. R. Wren, A. Azarbayejani, T. Darrell and A. P. Pentland, 'Pentland. Pfinder: Real-time tracking of the human body,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, no. 7, p. 780–785, 1997.
[50] T. Horprasert, D. Harwood and L. S. Davis, 'A statistical approach for real-time robust background subtraction and shadow detection,' in Proceedings of the IEEE International Conference on Computer Vision, 1999.
[51] J. C. S. Jacques, C. R. Jung and S. Raupp Musse, 'A background subtraction model adapted to illumination changes,' in Proceedings of the IEEE International Conference on Image Processing, 2006.
[52] J. Davis and V. Sharma, 'Robust background-subtraction for person detection in thermal imagery,' in Proceedings of the IEEE International Workshop on Object Tracking and Classification Beyond the Visible Spectrum, 2004.
[53] M. Harville, G. Gordon and J. Woodfill, 'Foreground segmentation using adaptive mixture models in color and depth,' in Proceedings of the IEEE Workshop on Detection and Recognition of Events in Video, 2001.
[54] J. M. Guo and C. S. Hsu, 'Cascaded background subtraction using block-based and pixel-based codebooks,' in Proceedings of the IEEE 20th International Conference on Pattern Recognition, 2010.
[55] J. M. Guo, Y. F. Liu, C. H. Hsia and C. S. Hsu, 'Hierarchical method for foreground detection using codebook model,' Circuits and Systems for Video Technology, IEEE Transactions on, vol. 21, no. 6, p. 804–815, 2011.
[56] O. Barnich and M. Van Droogenbroeck., 'Vibe: a powerful random technique to estimate the background in video sequences,' in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.
[57] R. Cucchiara, C. Grana, M. Piccardi and A. Prati, 'Detecting objects, shadows and ghosts in video streams by exploiting color and motion information,' in Proceedings of the IEEE 11th International Conference on Image Analysis and Processing, 2001.
[58] R. Cucchiara, C. Grana, M. Piccardi and A. Prati, 'Detecting moving objects, ghosts, and shadows in video streams,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 10, p. 1337–1342, 2003.
[59] J. B. Huang and C. S. Chen, 'Moving cast shadow detection using physics-based features,' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009.
[60] A. Sanin, C. Sanderson and B. C. Lovell, 'Shadow detection: A survey and comparative evaluation of recent methods,' Pattern recognition, vol. 45, no. 4, p. 1684–1695, 2012.
[61] S. C. Wang, T. F. Su and S. H. Lai, 'Detecting moving objects from dynamic background with shadow removal,' in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2011.
[62] A. Amato, I. Huerta, M. G. Mozerov, F. X. Roca and J. Gonzalez, 'Moving cast shadows detection methods for video surveillance applications,' in Proceedings of the Conference on Wide Area Surveillance, 2014.
[63] Y. S. Qin, S. F. Sun, X. B. Ma, S. Hu and B. J. Lei, 'A shadow removal algorithm for vibe in hsv color space,' in Proceedings of 3rd International Conference on Multimedia Technology, 2013.
[64] S. Nadimi and B. Bhanu, 'Physical models for moving shadow and object detection in video,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 8, p. 1079–1087, 2004.
[65] J. W. Hsieh, W. F. Hu, C. J. Chang and Y. S. Chen, 'Shadow elimination for effective moving object detection by gaussian shadow modeling,' Image and Vision Computing, vol. 21, no. 6, p. 505–516, 2003.
[66] A. Sanin, C. Sanderson and B. C. Lovell, 'Improved shadow removal for robust person tracking in surveillance scenarios,' in Proceedings of the 20th International Conference on Pattern Recognition, 2010.
[67] M. Brown and D. G. Lowe, 'Recognising panoramas,' in Proceedings of the International Conference on Computer Vision, 2003.
[68] R. Szeliski, 'Image alignment and stitching: A tutorial,' Foundations and Trends@ in Computer Graphics and Vision, vol. 2, no. 1, pp. 1-104, 2006.
[69] J. Elder, F. Dornaika, Y. Hou and R. Goldstein, Attentive wide-field sensing for visual telepresence and surveillance, Neurobiology of Attention, 2005.
[70] S. Prince, J. H. Elder, Y. Hou and M. Sizintsev, 'Pre-attentive face detection for foveated wide-field surveillance,' in Proceedings of the IEEE Workshop on Applications of Computer Vision/IEEE Workshop on Motion and Video Computing, 2005.
[71] F. W. Wheeler, R. L. Weiss and P. H. Tu, 'Face recognition at a distance system for surveillance applications,' in Proceedings of the 4th IEEE International Conference on Biometrics: Theory Applications and Systems, 2010.
[72] J. H. Elder, S. J. Prince, Y. Hou, M. Sizintsev and E. Olevskiy, 'Pre-attentive and attentive detection of humans in wide-field scenes,' International Journal of Computer Vision,, vol. 72, no. 1, p. 47–66, 2007.
[73] PENPOWER, 'Trackin idvr, auto ptz tracking system,' [Online]. Available: http://www.penpower.com.. [Accessed 2012].
[74] D. G. Lowe, 'Object recognition from local scale-invariant features,' in Proceedings of the 7th IEEE international conference on Computer Vision, 1999.
[75] G. Sansoni, M. Carocci and R. Rodella, 'Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,' Applied Optics, vol. 38, no. 31, p. 6565–6573, 1999.
[76] P. Perez, M. Gangnet and A. Blake, 'Poisson image editing,' ACM Transactions on Graphics, vol. 22, no. 3, p. 313–318, 2003.
[77] N. Gracias, M. Mahoor, S. Negahdaripour and A. Gleason, 'Fast image blending using watersheds and graph cuts,' Image and Vision Computing, vol. 27, no. 5, p. 597–607, 2009.
[78] W. Wu, J. Shao and W. Guo, 'Moving-object Detection Based on Shadow Removal and Prospect Reconstruction,' in Lecture Note in information Technology, 2012.
[79] E. Salvador, A. Cavallaro and T. Ebrahimi, 'Cast shadow segmentation using invariant color features,' Computer vision and image understanding, vol. 95, no. 2, p. 238–259, 2004.
[80] S. Zhenhong, S. Jinxia, C. Xiaofang, L. Hui, S. Guofeng, L. Hao and Q. Zhenping, 'Shadow removing based on color and texture features,' in Proceedings of International Conference on Consumer Electronics Communications and Networks, 2011.
[81] A. Prati, I. Mikic, M. M. Trivedi and R. Cucchiara, 'Detecting moving shadows: algorithms and evaluation,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 7, pp. 918-923, 2003.
[82] X. Wang, T. X. Han and S. Yan, 'An HOG-LBP human detector with partial occlusion handling,' in In Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV), 2009.
[83] A. Alahi, D. Marimon, M. Bierlaire and M. Kunt, 'A master-slave approach for object detection and matching with fixed and mobile cameras,' in In Proceeding of the 15th IEEE International Conference on Image Processing, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4860-
dc.description.abstract隨著國際間恐怖攻擊事件頻傳,世界各國對於反恐意識提升,於近年來相繼於境內各大城市或重要地點架設視訊安全監控系統。在視訊安全監控系統中,大範圍、高解析度的監控畫面以及智慧化的監控系統是不可或缺的。構建此系統必需同時擁有高品質的輸入影像和顯示裝置以及自動化偵測物體的功能。
鑑於高品質的顯示裝置發展迅速,而高解析度監控攝影機發展緩慢,與顯示器相比並沒有廣泛的被使用。在本文章的第一部分中,我們設計了一個創新的攝影機架構,包含固定式廣角攝影機以及高解析度快速球型攝影機,來建構大範圍、多倍數和多重解析度的視訊監控系統,其提供多重解析度的移動物體資訊。
首先,我們發展一套新的攝影機校正方式,計算固定式廣角攝影機以及高解析度快速球型攝影機之間的對應關係、快速球型攝影機自身旋轉校正以及快速球型攝影機多倍數校正。快速球型攝影機多倍數校正,是基於不同放大倍數在不同角度上具有一致性的特性,來加速校正的過程且不影響正確性; 此校正方式為一新穎的校正方式。完成雙攝影機的校正後,我們使用快速球型攝影機合成一個大範圍高解析的背景影像。當前景物在固定式廣角攝影機中被偵測到後,快速球型攝影機就會被驅使並對使用者選擇的物體進行連續追蹤。最後,我們整合了預先建構好的大範圍高解析背景以及分別由固定式廣角及快速球型攝影機所取的低高解析度前景影像,產生大範圍、多倍數以及高解析度監控畫面。
對於智慧化視訊安全監控系統,自動偵測動物體是一個重要的議題,使用背景相減法來偵測前景物,是研究多年卻仍然很重要的部分。一個好的背景相減演算法可以忍受環境的變化,例如:動態背景和光照的突然變化。在本文章的第二部分中,我們設計了一個空間背景模型(spatial background model, SBM)的新架構。包含兩個主要成分,背景模型(background model, BM)和背景梯度提取器(background gradient extractor, BGE),來提取前景物體。對於每一張影像,我們都透過傳遞鄰居的資訊來建構背景模型,用於處理動態背景和突然的光線變化。背景梯度提取器與背景模型為同時建構和更新。為保持前景物形狀的完整性,我們利用背景梯度資訊設計禁止傳遞的策略。該方法可以有效地擷取前景和消除背景噪音。
此外,在視訊安全監控的應用中,物體的影子偵測和移除是物體偵測不可或缺的部分。在本文章的第三部分中,我們提出一個新的物體影子去除架構。整合兩個主要偵測器,移動物體偵測器和影子偵測器。對於移動物體,我們利用空間背景模型來偵測移動物體。對於影子去除,我們首先抽取出影子的特徵,包含色度、物理以及紋理性質。然後,使用隨機森林演算法學習影子特徵並產生隨機森林影子偵測模組。接著,我們對時空背景模型產生的結果使用隨機森林影子偵測模組進行影子去除。我們所提出的方法可以有效地檢測出移動物體並移除陰影的影響。此外,透過與其他技術做比較來展示我們所提出的方法,物體偵測與影子去除,的性能。
採用上述方法,使用雙攝影機架構建構出大範圍、高解析度影像,並利用時空背景模型有效的偵測出前景物資訊,進一步利用隨機森林演算法去除移動物體影子的影像,更精準的擷取出移動物體範圍,有效提高智慧化視訊監控的正確性。
zh_TW
dc.description.abstractDue to the terrorist attacks occur frequently, the anti-terrorism awareness of each country is raising. Therefore, the visual surveillance monitoring systems are setting up at important sites or in major cities in recent years. In visual surveillance monitoring system, the large-area high-resolution visual monitoring view and intelligence monitoring systems are indispensable in surveillance applications. To construct such systems, high-quality image capture, high-resolution display devices and automated detection of objects are required.
Whereas high-quality displays have rapidly developed, the high-resolution surveillance cameras have progressed slowly and remain not widely used compared with displays. In the first part of this study, we designed an innovative framework, using a dual-camera system comprising a wide-angle fixed camera and a high-resolution pan-tilt-zoom (PTZ) camera to construct a large-area high-resolution visual-monitoring system that features multiresolution monitoring of moving objects. First, we developed a novel calibration approach to estimate the relationship between the two cameras and calibrate the PTZ camera. The PTZ camera was calibrated based on the consistent property of distinct pan-tilt angle at various zooming factors, accelerating the calibration process without affecting accuracy; this calibration process has not been reported previously. After calibrating the dual-camera system, we used the PTZ camera and synthesized a large-area high-resolution background image. When foreground targets were detected in the images captured by the wide-angle camera, the PTZ camera was controlled to continuously track the user-selected target. Last, we integrated preconstructed high-resolution background and low-resolution foreground images captured using the wide-angle camera and the high-resolution foreground image captured using the PTZ camera to generate a large-area high-resolution view of the scene.
For intelligence visual surveillance monitoring system, the background subtraction is a crucial component, which has been studied over years. However, an efficient algorithm that can tolerate the environment changes such as dynamic backgrounds and sudden changes of illumination is still demanding. In the second part of this study, we design an innovative framework called the spatial background model (SBM) from a single-layer codebook model. Two main components, the background model (BM) and the background gradient extractor (BGE), are constructed to extract the foreground objects. The background model is built for each single frame with spatial information propagated from the neighbor locations, which is useful for handling dynamic background and sudden lighting changes. The background gradient extractor is also constructed and updated, and we design a propagation forbidden policy for background updating, so as to keep the completeness of foreground shape via the background gradient information. The proposed method can efficiently capture the foreground and eliminates the noise of background.
Moreover, Cast shadows detection and removal is indispensable in the object detection to many surveillance applications. In the third part of this study, we present a novel framework for removing cast shadow of moving objects. Two main components, moving foreground detector and shadow detector, are integrated. For moving objects, we utilize the spatial background model (SBM) to detect the moving objects. For shadow removal, we first extract the shadow features which are chromaticity, physical property, and texture. Then, using the classifier, Random Forest, to learn the shadow model with shadow features. After that, removing the shadow from the result of SBM with the Random Forest shadow detector (RFSD). The proposed method can effectively detect the moving objects and remove the effect of shadow. Furthermore, we demonstrate the performance of our method compared with some techniques of object detection and shadow removal.
Using these methodologies, constructing a large-area and high-resolution view using a dual-camera system, detecting the moving objects with spatial background model, and using random forest shadow detector to remove the shadow effect, to improve the accuracy of intelligence of monitoring surveillance.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:48:59Z (GMT). No. of bitstreams: 1
ntu-104-D00922004-1.pdf: 4675214 bytes, checksum: 640f1d7efa250f9dc0acc7b429530a17 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
致謝 iii
摘要 v
ABSTRACT vii
TABLE OF CONTENTS xi
TABLE OF FIGURES xv
TABLE OF TABLES xix
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Outline of this Research 3
1.2.1 Large-Area High-Resolution Visual Monitoring Using a Dual-Camera System 4
1.2.2 Spatial Background Modeling Using a Single-Layer Codebook Model 5
1.2.3 Combining Spatial Background Modeling and Random Forest Classifier for Foreground Segmentation and Shadow Removal 5
1.3 Organization of the Thesis 6
CHAPTER 2 RELATED WORK 7
2.1 Visual Monitoring System 7
2.2 Background Modeling 11
2.3 Cast Shadow Removal 13
CHAPTER 3 LARGE-AREA HIGH-RESOLUTION VISUAL MONITORING USING A DUAL-CAMERA SYSTEM 19
3.1 Introduction 19
3.2 System Architecture 22
3.3 Camera Calibration 24
3.3.1 Calibration between Wide-Angle and PTZ Cameras 24
3.3.2 PTZ Camera Calibration 25
3.4 Large-Area High-Resolution Visual Monitoring 32
3.4.1 Construction of High-Resolution Background Images 33
3.4.2 Multiresolution Foreground Images 41
3.5 Experiments 43
3.5.1 Experimental Analysis of PTZ-Camera Calibration 43
3.5.2 System Demonstration 47
3.6 Summary 48
CHAPTER 4 SPATIAL BACKGROUND MODEL USING A SINGLE-LAYER CODEBOOK MODEL 51
4.1 Introduction 51
4.2 Spatial Background Model (SBM) 52
4.2.1 Background Model (BM) 53
4.2.2 Background Gradient Extractor (BGE) 60
4.3 Detection results and comparison 63
4.5 Summary 66
CHAPTER 5 COMBINING SPATIAL BACKGROUND MODELING AND RANDOM FOREST CLASSIFIER FOR FOREGROUND SEGMENTATION AND SHADOW REMOVAL 69
5.1 Introduction 69
5.2 System Architecture 71
5.3 Random Forest Shadow Detector 71
5.3.1 Feature Extraction 71
5.3.2 Random Forest Classifier 74
5.4 Experiments 74
5.4.1 Experimental Results of Shadow Removal 75
5.4.2 Comparison of SVM and Random Forest Classifiers 76
5.4.3 Experimental Results of Different methods 77
5.4.4 Experimental Results of the Proposed Method 79
5.6 Summary 81
CHAPTER 6 CONCLUSION AND FUTURE WORK 83
6.1 Summary of the Thesis 83
6.2 Future Directions 84
LIST OF REFERENCES 87
dc.language.isoen
dc.title使用大範圍高解析視訊監控系統從事目標物之偵測與影子去除zh_TW
dc.titleTarget Detection and Shadow Removal for a Large-Area High-Resolution Visual Surveillance Systemen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee?范國清(Kuo-Chin Fan),賴尚宏(Shang-Hong Lai),徐繼聖(Gee-Sern Hsu),莊永裕(Yung-Yu Chuang),陳祝嵩(Chu-song Chen)
dc.subject.keyword大範圍和高解析度視訊監控系統,雙攝影機系統,空間背景模型,物體偵測,影子去除,支援向量機,隨機森林,zh_TW
dc.subject.keywordlarge-area and high-resolution visual monitoring system,dual-camera system,spatial background model,object detection,shadow removal,support vector machine,random forest,en
dc.relation.page94
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-01-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf4.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved